
Cheetah
Release 0.6.3

Jan Kaiser, Chenran Xu

Mar 28, 2024

EXAMPLES

1 Installation 3

2 Examples 5
2.1 Tracking through a simple lattice . 5
2.2 Converting lattices from other simulation codes . 7
2.3 Optimising Cheetah for speed . 8
2.4 Gradient-based optimisation using Cheetah and PyTorch . 11

3 Documentation 19
3.1 Accelerator . 19
3.2 Astralavista . 41
3.3 DontBmad . 41
3.4 Error . 44
3.5 LatticeJSON . 44
3.6 NOcelot . 46
3.7 Particles . 46
3.8 Track Methods . 55
3.9 Utils . 55

4 Cite Cheetah 57

5 For Developers 59

6 Indices and tables 61

Python Module Index 63

Index 65

i

ii

Cheetah, Release 0.6.3

Cheetah is a particle tracking accelerator we built specifically to speed up the training of reinforcement learning models.

GitHub repository: https://github.com/desy-ml/cheetah

Paper: https://arxiv.org/abs/2401.05815

EXAMPLES 1

https://github.com/desy-ml/cheetah
https://github.com/desy-ml/cheetah
https://arxiv.org/abs/2401.05815

Cheetah, Release 0.6.3

2 EXAMPLES

CHAPTER

ONE

INSTALLATION

Simply install Cheetah from PyPI by running the following command.

pip install cheetah-accelerator

3

Cheetah, Release 0.6.3

4 Chapter 1. Installation

CHAPTER

TWO

EXAMPLES

We provide some examples to demonstrate some features of Cheetah and show how to use them. They provide a good
entry point to using Cheetah, but they do not represent its full functionality. To move beyond the examples, please refer
to the in-depth documentation. If you feel like other examples should be added, feel free to open an issue on GitHub.

2.1 Tracking through a simple lattice

In this example, we create a custom lattice and track a beam through it. We start with some imports.

[1]: import torch

from cheetah import (
BPM,
Drift,
HorizontalCorrector,
ParticleBeam,
Segment,
VerticalCorrector,

)

Lattices in Cheetah are represented by Segments. A Segment is created as follows.

[2]: segment = Segment(
elements=[

BPM(name="BPM1SMATCH"),
Drift(length=torch.tensor(1.0)),
BPM(name="BPM6SMATCH"),
Drift(length=torch.tensor(1.0)),
VerticalCorrector(length=torch.tensor(0.3), name="V7SMATCH"),
Drift(length=torch.tensor(0.2)),
HorizontalCorrector(length=torch.tensor(0.3), name="H10SMATCH"),
Drift(length=torch.tensor(7.0)),
HorizontalCorrector(length=torch.tensor(0.3), name="H12SMATCH"),
Drift(length=torch.tensor(0.05)),
BPM(name="BPM13SMATCH"),

]
)

Note that many values must be passed to lattice elements as torch.Tensors. This is because Cheetah uses automatic
differentiation to compute the gradient of the beam position at the end of the lattice with respect to the element strengths.
This is necessary for gradient-based magnet setting optimisation.

5

Cheetah, Release 0.6.3

Named lattice elements (i.e. elements that were given a name keyword argument) can be accessed by name and their
parameters changed like so.

[3]: segment.V7SMATCH.angle = torch.tensor(3.142e-3)

Next, we create a beam to track through the lattice. In this particular example, we import a beam from an Astra particle
distribution file. Note that we are using a ParticleBeam here, which is a beam defined by individual particles. This
is the most precise way to track a beam through a lattice, but also slower than the alternative ParameterBeam which is
defined by the beam’s parameters. Instead of importing beams from other simulation codes, you can also create beams
from scratch, either using their parameters or their Twiss parameters.

[4]: incoming_beam = ParticleBeam.from_astra("../../tests/resources/ACHIP_EA1_2021.1351.001")

In order to track a beam through the segment, simply call the segment’s track method.

[5]: outgoing_beam = segment.track(incoming_beam)

You may plot a segment with reference particle traces bay calling

[6]: segment.plot_overview(beam=incoming_beam)

where the optional keyword argument beam is the incoming beam represented by the reference particles. Cheetah will
use a default incoming beam, if no beam is passed.

6 Chapter 2. Examples

Cheetah, Release 0.6.3

2.2 Converting lattices from other simulation codes

In this example, we demonstrate how to convert lattices from other simulation codes. At the moment, Cheetah supports
the conversion of lattices Ocelot and Bmad.

[1]: import ocelot
import torch

from cheetah import Segment

math_op.py: module Numba is not installed. Install it if you want speed up correlation␣
→˓calculations

[INFO] : : beam.py: module NUMBA is not installed. Install it to speed up calculation
[INFO] : : : : : : : : high_order.py: module NUMBA is not installed. Install it to␣
→˓speed up calculation
[INFO] radiation_py.py: module NUMBA is not installed. Install it to speed up␣
→˓calculation
[INFO] radiation_py.py: module NUMBA is not installed. Install it to speed up␣
→˓calculation
[INFO] csr.py: module NUMBA is not installed. Install it to speed up calculation
[INFO] csr.py: module PYFFTW is not installed. Install it to speed up calculation.
[INFO] csr.py: module NUMEXPR is not installed. Install it to speed up calculation
[INFO] wake3D.py: module NUMBA is not installed. Install it to speed up calculation

initializing ocelot...
import: module NUMBA is not installed. Install it to speed up calculation
import: module PYFFTW is not installed. Install it to speed up calculation
import: module NUMEXPR is not installed. Install it to speed up calculation

Lattice conversions can conveniently be done using class methods defined by the Segment class.

To convert an Ocelot cell that is stored as a Python variable, simply pass it to Segment.from_ocelot():

[2]: ocelot_cell = [
ocelot.Drift(l=1.0),
ocelot.Quadrupole(l=0.2, k1=4.2),
ocelot.Drift(l=1.0),

]

ocelot_converted = Segment.from_ocelot(ocelot_cell)
ocelot_converted

[2]: Segment(elements=ModuleList(
(0): Drift(length=tensor(1.), name='ID_27628570_', device='cpu')
(1): Quadrupole(length=tensor(0.2000), k1=tensor(4.2000), misalignment=tensor([0., 0.

→˓]), tilt=tensor(0.), name='ID_99960050_', device="'cpu'")
(2): Drift(length=tensor(1.), name='ID_94109468_', device='cpu')

), name='unnamed_element_0', device='cpu')

Bmad on the other are read from .bmad files. To convert the following Bmad lattice

[3]: !cat ../../tests/resources/bmad_tutorial_lattice.bmad

! Lattice file: simple.bmad
beginning[beta_a] = 10. ! m a-mode beta function

(continues on next page)

2.2. Converting lattices from other simulation codes 7

Cheetah, Release 0.6.3

(continued from previous page)

beginning[beta_b] = 10. ! m b-mode beta function
beginning[e_tot] = 10e6 ! eV Or can set beginning[p0c]

parameter[geometry] = open ! Or closed
parameter[particle] = electron ! Reference particle.

d: drift, L = 0.5
b: sbend, L = 0.5, g = 1, e1 = 0.1, dg = 0.001 ! g = 1/design_radius
q: quadrupole, L = 0.6, k1 = 0.23

lat: line = (d, b, q) ! List of lattice elements
use, lat ! Line used to construct the lattice

, pass the file path to Segment.from_bmad().

[4]: bmad_converted = Segment.from_bmad("../../tests/resources/bmad_tutorial_lattice.bmad")
bmad_converted

[4]: Segment(elements=ModuleList(
(0): Drift(length=tensor(0.5000), name='d', device='cpu')
(1): Dipole(length=tensor(0.5000), angle=tensor(0.), e1=tensor(0.1000),e2=tensor(0.),

→˓tilt=tensor(0.),fringe_integral=tensor(0.),fringe_integral_exit=tensor(0.),
→˓gap=tensor(0.),name='b', device='cpu')
(2): Quadrupole(length=tensor(0.6000), k1=tensor(0.2300), misalignment=tensor([0., 0.

→˓]), tilt=tensor(0.), name='q', device="'cpu'")
), name='lat', device='cpu')

2.3 Optimising Cheetah for speed

One of Cheetah’s standout features is its computational speed. This is achieved through some optimisations under the
hood, which the user never needs to worry about. Often, however, there further optimisations that can be made when
knowledge on how the model will be used is available. For example, in many cases, one might load a large lattice of an
entire facility that has thousands of elements, but then only ever changes a handful of these elements for the experiments
at hand. For this case, Cheetah offers some opt-in optimisation features that can help speed up simulations significantly
by an order of magnitude or more in some cases.

[1]: import cheetah
import torch

[2]: incoming_beam = cheetah.ParameterBeam.from_astra(
"../../tests/resources/ACHIP_EA1_2021.1351.001"

)

Let’s define a large lattice. With many quadrupole magnets and drift sections in the center and a pair of steerers at
each end. We assume that the quadrupole magnets are at their design settings and will never be touched. Only the two
steerers at each end are of interest to us, for example because we would like to train a neural network policy to steer the
beam using these steerers. Furthermore, as many lattices do, there are a bunch of markers in this lattice. These markers
may be helpful to mark certain positions along the beamline, but they don’t actually add anything to the physics of the
simulation.

8 Chapter 2. Examples

Cheetah, Release 0.6.3

[3]: original_segment = cheetah.Segment(
elements=[

cheetah.HorizontalCorrector(
length=torch.tensor(0.1), angle=torch.tensor(0.0), name="HCOR_1"

),
cheetah.Drift(length=torch.tensor(0.3)),
cheetah.VerticalCorrector(

length=torch.tensor(0.1), angle=torch.tensor(0.0), name="VCOR_1"
),
cheetah.Drift(length=torch.tensor(0.3)),

]
+ [

cheetah.Quadrupole(length=torch.tensor(0.1), k1=torch.tensor(4.2)),
cheetah.Drift(length=torch.tensor(0.2)),
cheetah.Quadrupole(length=torch.tensor(0.1), k1=torch.tensor(-4.2)),
cheetah.Drift(length=torch.tensor(0.2)),
cheetah.Marker(),
cheetah.Quadrupole(length=torch.tensor(0.1), k1=torch.tensor(0.0)),
cheetah.Drift(length=torch.tensor(0.2)),

]
* 150
+ [

cheetah.HorizontalCorrector(
length=torch.tensor(0.1), angle=torch.tensor(0.0), name="HCOR_2"

),
cheetah.Drift(length=torch.tensor(0.3)),
cheetah.VerticalCorrector(

length=torch.tensor(0.1), angle=torch.tensor(0.0), name="VCOR_2"
),
cheetah.Drift(length=torch.tensor(0.3)),

]
)

[4]: len(original_segment.elements)

[4]: 1058

First, we test how long it takes to track a beam through this segment without any optimisations beyond the ones auto-
matically done under the hood.

[5]: %%timeit
original_segment.track(incoming_beam)

66.1 ms ± 178 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Just by removing unused markers, we already see a small performance improvement.

[6]: markers_removed_segment = original_segment.without_inactive_markers()

[7]: %%timeit
markers_removed_segment.track(incoming_beam)

65.3 ms ± 203 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Drift sections tend to be the cheapest elements to compute. At the same time, many elements in a lattice may be

2.3. Optimising Cheetah for speed 9

Cheetah, Release 0.6.3

switched off at any given time. When they are switched off, they behave almost exactly like drift sections, but they still
require additional computations to arrive at this result. We can however safely replace them by actual Drift elements,
which clearly speeds up computations.

[8]: inactive_to_drifts_segment = original_segment.inactive_elements_as_drifts(
except_for=["HCOR_1", "VCOR_1", "HCOR_2", "VCOR_2"]

)
len(inactive_to_drifts_segment.elements)

[8]: 1058

[9]: %%timeit
inactive_to_drifts_segment.track(incoming_beam)

50 ms ± 198 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

The most significant improvement can be made by merging elements that are not expected to be changed in the future.
For this, Cheetah offers the transfer_maps_merged method. This will by default merge the transfer maps of all
elements in the segment. In almost all realistic applications, however, there are some elements the settings of which we
wish to change in the future. By passing a list of their names to except_for, we can instruct Cheetah to only merge
elements in between the passed elements.

NOTE: Transfer map merging can only be done for a constant incoming beam energy, because the transfer maps need
to be computed before they can be merged, and computing them might require the beam energy at the entrance of
the element that the transfer map belongs to. If you want to try a different beam energy, you will need to reapply the
optimisations to the original lattice while passing a beam with the desired energy.

[10]: transfer_maps_merged_segment = original_segment.transfer_maps_merged(
incoming_beam=incoming_beam, except_for=["HCOR_1", "VCOR_1", "HCOR_2", "VCOR_2"]

)
len(transfer_maps_merged_segment.elements)

[10]: 8

[11]: %%timeit
transfer_maps_merged_segment.track(incoming_beam)

96.2 µs ± 121 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

[12]: transfer_maps_merged_segment

[12]: Segment(elements=ModuleList(
(0): HorizontalCorrector(length=tensor(0.1000), angle=tensor(0.), name='HCOR_1',␣

→˓device='cpu')
(1): Drift(length=tensor(0.3000), name='unnamed_element_0', device='cpu')
(2): VerticalCorrector(length=tensor(0.1000), angle=tensor(0.), name='VCOR_1', device=

→˓'cpu')
(3): CustomTransferMap(name='unnamed_element_615', device='cpu')
(4): HorizontalCorrector(length=tensor(0.1000), angle=tensor(0.), name='HCOR_2',␣

→˓device='cpu')
(5): Drift(length=tensor(0.3000), name='unnamed_element_9', device='cpu')
(6): VerticalCorrector(length=tensor(0.1000), angle=tensor(0.), name='VCOR_2', device=

→˓'cpu')
(7): CustomTransferMap(name='unnamed_element_616', device='cpu')

), name='unnamed', device='cpu')

10 Chapter 2. Examples

Cheetah, Release 0.6.3

It is also possible and often advisable to combine optimisations. However, note that this might not always yield as
much of an improvement as one may have hoped looking at the improvements delivered by each optimisation on its
own. This is usually because these optimisations share some of their effects, i.e. if the first optimisation has already
performed a change on the lattice that the second optimisation would have done as well, the second optimisation will
not lead to a further speed improvement.

[13]: fully_optimized_segment = (
original_segment.without_inactive_markers()
.inactive_elements_as_drifts(except_for=["HCOR_1", "VCOR_1", "HCOR_2", "VCOR_2"])
.transfer_maps_merged(

incoming_beam=incoming_beam, except_for=["HCOR_1", "VCOR_1", "HCOR_2", "VCOR_2"]
)

)
len(fully_optimized_segment.elements)

[13]: 8

[14]: fully_optimized_segment

[14]: Segment(elements=ModuleList(
(0): HorizontalCorrector(length=tensor(0.1000), angle=tensor(0.), name='HCOR_1',␣

→˓device='cpu')
(1): Drift(length=tensor(0.3000), name='unnamed_element_617', device='cpu')
(2): VerticalCorrector(length=tensor(0.1000), angle=tensor(0.), name='VCOR_1', device=

→˓'cpu')
(3): CustomTransferMap(name='unnamed_element_1221', device='cpu')
(4): HorizontalCorrector(length=tensor(0.1000), angle=tensor(0.), name='HCOR_2',␣

→˓device='cpu')
(5): Drift(length=tensor(0.3000), name='unnamed_element_1219', device='cpu')
(6): VerticalCorrector(length=tensor(0.1000), angle=tensor(0.), name='VCOR_2', device=

→˓'cpu')
(7): CustomTransferMap(name='unnamed_element_1222', device='cpu')

), name='unnamed', device='cpu')

[15]: %%timeit
fully_optimized_segment.track(incoming_beam)

96.9 µs ± 780 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

[]:

2.4 Gradient-based optimisation using Cheetah and PyTorch

Cheetah is a differentiable beam dynamics simulation engine, making it ideally suited to gradient-based optimisation,
for example for optimisation magnet settings, lattice geometries or even for system identification. Cheetah’s tight
integration with PyTorch makes this particularly easy as it opens up the use of PyTorch’s automatic differentiation
capabilities and toolchain.

In this example, we demonstrate how to use Cheetah for magnet setting optimisation and how to add custom nor-
malisation to that same task.

[1]: import matplotlib.pyplot as plt
import torch

(continues on next page)

2.4. Gradient-based optimisation using Cheetah and PyTorch 11

Cheetah, Release 0.6.3

(continued from previous page)

import torch.nn as nn
import torch.nn.functional as F

import cheetah

2.4.1 Simple example (without normalisation)

We start by creating the lattice section and incoming beam.

[2]: ares_ea = cheetah.Segment.from_lattice_json("ARESlatticeStage3v1_9.json").subcell(
"AREASOLA1", "AREABSCR1"

)

[3]: incoming_beam = cheetah.ParticleBeam.from_astra(
"../../tests/resources/ACHIP_EA1_2021.1351.001"

)
incoming_beam

[3]: ParticleBeam(n=100000, mu_x=tensor(8.2413e-07), mu_xp=tensor(5.9885e-08), mu_y=tensor(-1.
→˓7276e-06), mu_yp=tensor(-1.1746e-07), sigma_x=tensor(0.0002), sigma_xp=tensor(3.6794e-
→˓06), sigma_y=tensor(0.0002), sigma_yp=tensor(3.6941e-06), sigma_s=tensor(8.0116e-06),␣
→˓sigma_p=tensor(0.0023), energy=tensor(1.0732e+08, dtype=torch.float64))

By default, Cheetah assumes that no part of its simulation requires differentiation and therefore does not track gradients,
all parameters are of type torch.Tensor. To enable gradient tracking for parameters you would like to optimise over,
you need to wrap them in torch.nn.Parameter, either when creating your elements and beams, or later on.

In this example, we would like to optimise over the settings of three quadrupoles and two steerers in the experimental
area at the ARES accelerator facility at DESY. In this case, we will need to redefine the k1 and angle parameters of
the magnets as torch.nn.Parameter.

Note: You could simply wrap the value of the parameters as the value it already has, e.g.

ares_ea.AREAMQZM1.k1 = nn.Parameter(ares_ea.AREAMQZM1.k1)

[4]: ares_ea.AREAMQZM1.k1 = nn.Parameter(ares_ea.AREAMQZM1.k1)
ares_ea.AREAMQZM2.k1 = nn.Parameter(ares_ea.AREAMQZM2.k1)
ares_ea.AREAMCVM1.angle = nn.Parameter(ares_ea.AREAMCVM1.angle)
ares_ea.AREAMQZM3.k1 = nn.Parameter(ares_ea.AREAMQZM3.k1)
ares_ea.AREAMCHM1.angle = nn.Parameter(ares_ea.AREAMCHM1.angle)

Next, we define the function that will do the actual optimisation. The goal of our optimisation is to tune the transverse
beam parameters [mu_x, sigma_x, mu_y, sigma_y] towards some target beam parameters on a diagnostic screen
at the end of the considered lattice segment. Hence, we pass the target beam parameters to the train function and
make use of PyTorch’s torch.nn.function.mse_loss function. Note that we can easily make use of PyTorch’s
Adam optimiser implementation. As a result the following code looks very similar to a standard PyTorch optimisation
loop for the training of neural networks.

[5]: def train(num_steps: int, target_beam_parameters: torch.Tensor, lr=0.1) -> dict:
beam_parameter_history = []
magnet_setting_history = []
loss_history = []

(continues on next page)

12 Chapter 2. Examples

Cheetah, Release 0.6.3

(continued from previous page)

optimizer = torch.optim.Adam(ares_ea.parameters(), lr=lr)

for _ in range(num_steps):
optimizer.zero_grad()

outgoing_beam = ares_ea.track(incoming_beam)

observed_beam_parameters = torch.stack(
[

outgoing_beam.mu_x,
outgoing_beam.sigma_x,
outgoing_beam.mu_y,
outgoing_beam.sigma_y,

]
)
loss = F.mse_loss(observed_beam_parameters, target_beam_parameters)

loss.backward()

Log magnet settings and beam parameters
loss_history.append(loss.item())
beam_parameter_history.append(observed_beam_parameters.detach().numpy())
magnet_setting_history.append(

torch.stack(
[

ares_ea.AREAMQZM1.k1,
ares_ea.AREAMQZM2.k1,
ares_ea.AREAMCVM1.angle,
ares_ea.AREAMQZM3.k1,
ares_ea.AREAMCHM1.angle,

]
)
.detach()
.numpy()

)
optimizer.step()

history = {
"loss": loss_history,
"beam_parameters": beam_parameter_history,
"magnet_settings": magnet_setting_history,

}
return history

We now simply run the optimisation function with a target beam that is centred on the origin and focused to be as small
as possible.

[6]: history = train(num_steps=100, target_beam_parameters=torch.zeros(4))

The returned history dictionary allows us to plot the evolution of the optimisation process.

2.4. Gradient-based optimisation using Cheetah and PyTorch 13

Cheetah, Release 0.6.3

[7]: plt.figure(figsize=(16, 3))

plt.subplot(1, 4, 1)
plt.plot(history["loss"])
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.title("Loss")

plt.subplot(1, 4, 2)
plt.plot([record[0] for record in history["beam_parameters"]], label="mu_x")
plt.plot([record[1] for record in history["beam_parameters"]], label="sigma_x")
plt.plot([record[2] for record in history["beam_parameters"]], label="mu_y")
plt.plot([record[3] for record in history["beam_parameters"]], label="sigma_y")
plt.xlabel("Iteration")
plt.ylabel("Beam parameter (m)")
plt.title("Beam parameters")
plt.legend()

plt.subplot(1, 4, 3)
plt.plot([record[0] for record in history["magnet_settings"]], label="AREAMQZM1")
plt.plot([record[1] for record in history["magnet_settings"]], label="AREAMQZM2")
plt.plot([record[3] for record in history["magnet_settings"]], label="AREAMQZM3")
plt.xlabel("Iteration")
plt.ylabel("Quadrupole strength (1/m^2)")
plt.title("Quadrupole settings")
plt.legend()

plt.subplot(1, 4, 4)
plt.plot([record[2] for record in history["magnet_settings"]], label="AREAMCVM1")
plt.plot([record[4] for record in history["magnet_settings"]], label="AREAMCHM1")
plt.xlabel("Iteration")
plt.ylabel("Steering angle (rad)")
plt.title("Steerer settings")
plt.legend()

plt.tight_layout()
plt.show()

Success! We can observe that the optimisation converges to a solution that is close to the target beam parameters.

However, we can also observe that the quadrupole converges very slowly, indicating that the learning rate is too small,
while the steerers keep overshooting the target, indicating that the learning rate is too large. This is a common problem
in gradient-based optimisation caused by the very different scales of k1 and angle, and can be solved by normalising
the parameters under optimisation.

14 Chapter 2. Examples

Cheetah, Release 0.6.3

2.4.2 Normalising parameters in gradient-based optimisation

In the following example we demonstrate how to normalise the parameters under optimisation with Cheetah. The
same principle can also be applied to other custom mechanisms one might like to build around the lattice optimisation
process, e.g. to add custom constraints, coupled parameters, etc.

To achieve this, we wrap the lattice section in a torch.nn.Module and define a forward function that applies the
normalisation to the parameters before passing them to the lattice section.

Note that this time, simply for the fun of it, we also start with randomly initialised magnet settings.

[8]: class NormalizedARESExperimentalArea(nn.Module):
"""
Wrapper around the AREA experimental area that holds normalised versions of the
magnet settings as its trainable parameters.
"""

QUADRUPOLE_LIMIT = 5.0
STEERER_LIMIT = 6.1782e-3

def __init__(self) -> None:
super().__init__()
self.ares_ea = cheetah.Segment.from_lattice_json(

"ARESlatticeStage3v1_9.json"
).subcell("AREASOLA1", "AREABSCR1")

self.normalized_quadrupole_strengths = nn.Parameter(
torch.tensor([10.0, -10.0, 10.0]) / self.QUADRUPOLE_LIMIT
)
self.normalized_steering_angles = nn.Parameter(
torch.tensor([1e-3, -1e-3]) / self.STEERER_LIMIT
)

self.normalized_quadrupole_strengths = nn.Parameter(torch.randn(3) * 2 - 1)
self.normalized_steering_angles = nn.Parameter(torch.randn(2) * 2 - 1)

def forward(self, incoming_beam: cheetah.Beam):
self.ares_ea.AREAMQZM1.k1 = (

self.normalized_quadrupole_strengths[0] * self.QUADRUPOLE_LIMIT
)
self.ares_ea.AREAMQZM2.k1 = (

self.normalized_quadrupole_strengths[1] * self.QUADRUPOLE_LIMIT
)
self.ares_ea.AREAMCVM1.angle = (

self.normalized_steering_angles[0] * self.STEERER_LIMIT
)
self.ares_ea.AREAMQZM3.k1 = (

self.normalized_quadrupole_strengths[2] * self.QUADRUPOLE_LIMIT
)
self.ares_ea.AREAMCHM1.angle = (

self.normalized_steering_angles[1] * self.STEERER_LIMIT
)

return self.ares_ea.track(incoming_beam)

2.4. Gradient-based optimisation using Cheetah and PyTorch 15

Cheetah, Release 0.6.3

[9]: normalized_ares_ea = NormalizedARESExperimentalArea()

We then redefine the train function to use the torch.nn.Module instead of the lattice section directly.

Note that we also chose to apply normalisation to the beam parameters. This is not strictly necessary, but can help to
improve the stability of the optimisation process.

[10]: def train_normalized(num_steps: int, target_beam_parameters: torch.Tensor):
beam_parameter_history = []
magnet_setting_history = []
loss_history = []

optimizer = torch.optim.Adam(normalized_ares_ea.parameters(), lr=1e-1)

for _ in range(num_steps):
optimizer.zero_grad()

outgoing_beam = normalized_ares_ea(incoming_beam)
observed_beam_parameters = torch.stack(

[
outgoing_beam.mu_x,
outgoing_beam.sigma_x,
outgoing_beam.mu_y,
outgoing_beam.sigma_y,

]
)
loss = F.mse_loss(

observed_beam_parameters / 2e-3, target_beam_parameters / 2e-3
)

loss.backward()

Log magnet settings and beam parameters
loss_history.append(loss.item())
beam_parameter_history.append(observed_beam_parameters.detach().numpy())
magnet_setting_history.append(

torch.stack(
[

normalized_ares_ea.ares_ea.AREAMQZM1.k1,
normalized_ares_ea.ares_ea.AREAMQZM2.k1,
normalized_ares_ea.ares_ea.AREAMCVM1.angle,
normalized_ares_ea.ares_ea.AREAMQZM3.k1,
normalized_ares_ea.ares_ea.AREAMCHM1.angle,

]
)
.detach()
.numpy()

)

optimizer.step()

history = {
"loss": loss_history,

(continues on next page)

16 Chapter 2. Examples

Cheetah, Release 0.6.3

(continued from previous page)

"beam_parameters": beam_parameter_history,
"magnet_settings": magnet_setting_history,

}
return history

Now we run or new train_normalized function with the same target beam as before.

[11]: history = train_normalized(num_steps=200, target_beam_parameters=torch.zeros(4))

Then we plot the evolution of the optimisation process again.

[12]: plt.figure(figsize=(16, 3))

plt.subplot(1, 4, 1)
plt.plot(history["loss"])
plt.yscale("log")
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.title("Loss")

plt.subplot(1, 4, 2)
plt.plot([record[0] for record in history["beam_parameters"]], label="mu_x")
plt.plot([record[1] for record in history["beam_parameters"]], label="sigma_x")
plt.plot([record[2] for record in history["beam_parameters"]], label="mu_y")
plt.plot([record[3] for record in history["beam_parameters"]], label="sigma_y")
plt.xlabel("Iteration")
plt.ylabel("Beam parameter (m)")
plt.title("Beam parameters")
plt.legend()

plt.subplot(1, 4, 3)
plt.plot([record[0] for record in history["magnet_settings"]], label="AREAMQZM1")
plt.plot([record[1] for record in history["magnet_settings"]], label="AREAMQZM2")
plt.plot([record[3] for record in history["magnet_settings"]], label="AREAMQZM3")
plt.xlabel("Iteration")
plt.ylabel("Quadrupole strength (1/m^2)")
plt.title("Quadrupole settings")
plt.legend()

plt.subplot(1, 4, 4)
plt.plot([record[2] for record in history["magnet_settings"]], label="AREAMCVM1")
plt.plot([record[4] for record in history["magnet_settings"]], label="AREAMCHM1")
plt.xlabel("Iteration")
plt.ylabel("Steering angle (rad)")
plt.title("Steerer settings")
plt.legend()

plt.tight_layout()
plt.show()

2.4. Gradient-based optimisation using Cheetah and PyTorch 17

Cheetah, Release 0.6.3

As you can see this already looks much better than it did without normalisation.

18 Chapter 2. Examples

CHAPTER

THREE

DOCUMENTATION

For more advanced usage, please refer to the in-depth documentation.

3.1 Accelerator

class accelerator.Aperture(x_max: Tensor | Parameter | None = None, y_max: Tensor | Parameter | None =
None, shape: Literal['rectangular', 'elliptical'] = 'rectangular', is_active: bool =
True, name: str | None = None, device=None, dtype=torch.float32)

Physical aperture.

Parameters

• x_max – half size horizontal offset in [m]

• y_max – half size vertical offset in [m]

• shape – Shape of the aperture. Can be “rectangular” or “elliptical”.

• is_active – If the aperture actually blocks particles.

• name – Unique identifier of the element.

property defining_features: list[str]

List of features that define the element. Used to compare elements for equality and to save them.

NOTE: When overriding this property, make sure to call the super method and extend the list it returns.

property is_skippable: bool

Whether the element can be skipped during tracking. If True, the element’s transfer map is combined with
the transfer maps of surrounding skipable elements.

plot(ax: Axes, s: float)→ None
Plot a representation of this element into a matplotlib Axes at position s.

Parameters

• ax – Axes to plot the representation into.

• s – Position of the object along s in meters.

split(resolution: Tensor)→ list[Element]
Split the element into slices no longer than resolution. Some elements may not be splittable, in which case
a list containing only the element itself is returned.

Parameters
resolution – Length of the longest allowed split in meters.

19

Cheetah, Release 0.6.3

Returns
Ordered sequence of sliced elements.

track(incoming: Beam)→ Beam
Track particles through the element. The input can be a ParameterBeam or a ParticleBeam.

Parameters
incoming – Beam of particles entering the element.

Returns
Beam of particles exiting the element.

training: bool

transfer_map(energy: Tensor)→ Tensor
Generates the element’s transfer map that describes how the beam and its particles are transformed when
traveling through the element. The state vector consists of 6 values with a physical meaning: (in the trace
space notation)

• x: Position in x direction

• xp: Angle in x direction

• y: Position in y direction

• yp: Angle in y direction

• s: Position in longitudinal direction, the zero value is set to the

reference position (usually the center of the pulse) - p: Relative energy deviation from the reference particle

𝑝 = Δ𝐸
𝑝0𝐶

As well as a seventh value used to add constants to some of the prior values if necessary. Through this
seventh state, the addition of constants can be represented using a matrix multiplication.

Parameters
energy – Reference energy of the Beam. Read from the fed-in Cheetah Beam.

Returns
A 7x7 Matrix for further calculations.

class accelerator.BPM(is_active: bool = False, name: str | None = None)
Beam Position Monitor (BPM) in a particle accelerator.

Parameters

• is_active – If True the BPM is active and will record the beam’s position. If False the
BPM is inactive and will not record the beam’s position.

• name – Unique identifier of the element.

property defining_features: list[str]

List of features that define the element. Used to compare elements for equality and to save them.

NOTE: When overriding this property, make sure to call the super method and extend the list it returns.

property is_skippable: bool

Whether the element can be skipped during tracking. If True, the element’s transfer map is combined with
the transfer maps of surrounding skipable elements.

20 Chapter 3. Documentation

Cheetah, Release 0.6.3

plot(ax: Axes, s: float)→ None
Plot a representation of this element into a matplotlib Axes at position s.

Parameters

• ax – Axes to plot the representation into.

• s – Position of the object along s in meters.

split(resolution: Tensor)→ list[Element]
Split the element into slices no longer than resolution. Some elements may not be splittable, in which case
a list containing only the element itself is returned.

Parameters
resolution – Length of the longest allowed split in meters.

Returns
Ordered sequence of sliced elements.

track(incoming: Beam)→ Beam
Track particles through the element. The input can be a ParameterBeam or a ParticleBeam.

Parameters
incoming – Beam of particles entering the element.

Returns
Beam of particles exiting the element.

training: bool

transfer_map(energy: Tensor)→ Tensor
Generates the element’s transfer map that describes how the beam and its particles are transformed when
traveling through the element. The state vector consists of 6 values with a physical meaning: (in the trace
space notation)

• x: Position in x direction

• xp: Angle in x direction

• y: Position in y direction

• yp: Angle in y direction

• s: Position in longitudinal direction, the zero value is set to the

reference position (usually the center of the pulse) - p: Relative energy deviation from the reference particle

𝑝 = Δ𝐸
𝑝0𝐶

As well as a seventh value used to add constants to some of the prior values if necessary. Through this
seventh state, the addition of constants can be represented using a matrix multiplication.

Parameters
energy – Reference energy of the Beam. Read from the fed-in Cheetah Beam.

Returns
A 7x7 Matrix for further calculations.

class accelerator.Cavity(length: Tensor | Parameter, voltage: Tensor | Parameter | None = None, phase:
Tensor | Parameter | None = None, frequency: Tensor | Parameter | None = None,
name: str | None = None, device=None, dtype=torch.float32)

Accelerating cavity in a particle accelerator.

Parameters

3.1. Accelerator 21

Cheetah, Release 0.6.3

• length – Length in meters.

• voltage – Voltage of the cavity in volts.

• phase – Phase of the cavity in degrees.

• frequency – Frequency of the cavity in Hz.

• name – Unique identifier of the element.

property defining_features: list[str]

List of features that define the element. Used to compare elements for equality and to save them.

NOTE: When overriding this property, make sure to call the super method and extend the list it returns.

property is_active: bool

property is_skippable: bool

Whether the element can be skipped during tracking. If True, the element’s transfer map is combined with
the transfer maps of surrounding skipable elements.

plot(ax: Axes, s: float)→ None
Plot a representation of this element into a matplotlib Axes at position s.

Parameters

• ax – Axes to plot the representation into.

• s – Position of the object along s in meters.

split(resolution: Tensor)→ list[Element]
Split the element into slices no longer than resolution. Some elements may not be splittable, in which case
a list containing only the element itself is returned.

Parameters
resolution – Length of the longest allowed split in meters.

Returns
Ordered sequence of sliced elements.

track(incoming: Beam)→ Beam
Track particles through the cavity. The input can be a ParameterBeam or a ParticleBeam. For a cavity, this
does a little more than just the transfer map multiplication done by most elements.

Parameters
incoming – Beam of particles entering the element.

Returns
Beam of particles exiting the element.

training: bool

transfer_map(energy: Tensor)→ Tensor
Generates the element’s transfer map that describes how the beam and its particles are transformed when
traveling through the element. The state vector consists of 6 values with a physical meaning: (in the trace
space notation)

• x: Position in x direction

• xp: Angle in x direction

• y: Position in y direction

• yp: Angle in y direction

22 Chapter 3. Documentation

Cheetah, Release 0.6.3

• s: Position in longitudinal direction, the zero value is set to the

reference position (usually the center of the pulse) - p: Relative energy deviation from the reference particle

𝑝 = Δ𝐸
𝑝0𝐶

As well as a seventh value used to add constants to some of the prior values if necessary. Through this
seventh state, the addition of constants can be represented using a matrix multiplication.

Parameters
energy – Reference energy of the Beam. Read from the fed-in Cheetah Beam.

Returns
A 7x7 Matrix for further calculations.

class accelerator.CustomTransferMap(transfer_map: Tensor | Parameter, length: Tensor | None = None,
name: str | None = None, device=None, dtype=torch.float32)

This element can represent any custom transfer map.

defining_features()→ list[str]
List of features that define the element. Used to compare elements for equality and to save them.

NOTE: When overriding this property, make sure to call the super method and extend the list it returns.

classmethod from_merging_elements(elements: list[Element], incoming_beam: Beam)→
CustomTransferMap

Combine the transfer maps of multiple successive elements into a single transfer map. This can be used to
speed up tracking through a segment, if no changes are made to the elements in the segment or the energy
of the beam being tracked through them.

Parameters

• elements – List of consecutive elements to combine.

• incoming_beam – Beam entering the first element in the segment. NOTE: That this is
required because the separate original transfer maps have to be computed before being
combined and some of them may depend on the energy of the beam.

property is_skippable: bool

Whether the element can be skipped during tracking. If True, the element’s transfer map is combined with
the transfer maps of surrounding skipable elements.

plot(ax: Axes, s: float)→ None
Plot a representation of this element into a matplotlib Axes at position s.

Parameters

• ax – Axes to plot the representation into.

• s – Position of the object along s in meters.

split(resolution: Tensor)→ list[Element]
Split the element into slices no longer than resolution. Some elements may not be splittable, in which case
a list containing only the element itself is returned.

Parameters
resolution – Length of the longest allowed split in meters.

Returns
Ordered sequence of sliced elements.

training: bool

3.1. Accelerator 23

Cheetah, Release 0.6.3

transfer_map(energy: Tensor)→ Tensor
Generates the element’s transfer map that describes how the beam and its particles are transformed when
traveling through the element. The state vector consists of 6 values with a physical meaning: (in the trace
space notation)

• x: Position in x direction

• xp: Angle in x direction

• y: Position in y direction

• yp: Angle in y direction

• s: Position in longitudinal direction, the zero value is set to the

reference position (usually the center of the pulse) - p: Relative energy deviation from the reference particle

𝑝 = Δ𝐸
𝑝0𝐶

As well as a seventh value used to add constants to some of the prior values if necessary. Through this
seventh state, the addition of constants can be represented using a matrix multiplication.

Parameters
energy – Reference energy of the Beam. Read from the fed-in Cheetah Beam.

Returns
A 7x7 Matrix for further calculations.

class accelerator.Dipole(length: Tensor | Parameter, angle: Tensor | Parameter | None = None, e1: Tensor |
Parameter | None = None, e2: Tensor | Parameter | None = None, tilt: Tensor |
Parameter | None = None, fringe_integral: Tensor | Parameter | None = None,
fringe_integral_exit: Tensor | Parameter | None = None, gap: Tensor | Parameter |
None = None, name: str | None = None, device=None, dtype=torch.float32)

Dipole magnet (by default a sector bending magnet).

Parameters

• length – Length in meters.

• angle – Deflection angle in rad.

• e1 – The angle of inclination of the entrance face [rad].

• e2 – The angle of inclination of the exit face [rad].

• tilt – Tilt of the magnet in x-y plane [rad].

• fringe_integral – Fringe field integral (of the enterance face).

• fringe_integral_exit – (only set if different from fint) Fringe field integral of the exit
face.

• gap – The magnet gap [m], NOTE in MAD and ELEGANT: HGAP = gap/2

• name – Unique identifier of the element.

property defining_features: list[str]

List of features that define the element. Used to compare elements for equality and to save them.

NOTE: When overriding this property, make sure to call the super method and extend the list it returns.

property hx: Tensor

property is_active

24 Chapter 3. Documentation

Cheetah, Release 0.6.3

property is_skippable: bool

Whether the element can be skipped during tracking. If True, the element’s transfer map is combined with
the transfer maps of surrounding skipable elements.

plot(ax: Axes, s: float)→ None
Plot a representation of this element into a matplotlib Axes at position s.

Parameters

• ax – Axes to plot the representation into.

• s – Position of the object along s in meters.

split(resolution: Tensor)→ list[Element]
Split the element into slices no longer than resolution. Some elements may not be splittable, in which case
a list containing only the element itself is returned.

Parameters
resolution – Length of the longest allowed split in meters.

Returns
Ordered sequence of sliced elements.

training: bool

transfer_map(energy: Tensor)→ Tensor
Generates the element’s transfer map that describes how the beam and its particles are transformed when
traveling through the element. The state vector consists of 6 values with a physical meaning: (in the trace
space notation)

• x: Position in x direction

• xp: Angle in x direction

• y: Position in y direction

• yp: Angle in y direction

• s: Position in longitudinal direction, the zero value is set to the

reference position (usually the center of the pulse) - p: Relative energy deviation from the reference particle

𝑝 = Δ𝐸
𝑝0𝐶

As well as a seventh value used to add constants to some of the prior values if necessary. Through this
seventh state, the addition of constants can be represented using a matrix multiplication.

Parameters
energy – Reference energy of the Beam. Read from the fed-in Cheetah Beam.

Returns
A 7x7 Matrix for further calculations.

class accelerator.Drift(length: Tensor | Parameter, name: str | None = None, device=None,
dtype=torch.float32)

Drift section in a particle accelerator.

Note: the transfer map now uses the linear approximation. Including the R_56 = L / (beta**2 * gamma **2)

Parameters

• length – Length in meters.

• name – Unique identifier of the element.

3.1. Accelerator 25

Cheetah, Release 0.6.3

property defining_features: list[str]

List of features that define the element. Used to compare elements for equality and to save them.

NOTE: When overriding this property, make sure to call the super method and extend the list it returns.

property is_skippable: bool

Whether the element can be skipped during tracking. If True, the element’s transfer map is combined with
the transfer maps of surrounding skipable elements.

plot(ax: Axes, s: float)→ None
Plot a representation of this element into a matplotlib Axes at position s.

Parameters

• ax – Axes to plot the representation into.

• s – Position of the object along s in meters.

split(resolution: Tensor)→ list[Element]
Split the element into slices no longer than resolution. Some elements may not be splittable, in which case
a list containing only the element itself is returned.

Parameters
resolution – Length of the longest allowed split in meters.

Returns
Ordered sequence of sliced elements.

training: bool

transfer_map(energy: Tensor)→ Tensor
Generates the element’s transfer map that describes how the beam and its particles are transformed when
traveling through the element. The state vector consists of 6 values with a physical meaning: (in the trace
space notation)

• x: Position in x direction

• xp: Angle in x direction

• y: Position in y direction

• yp: Angle in y direction

• s: Position in longitudinal direction, the zero value is set to the

reference position (usually the center of the pulse) - p: Relative energy deviation from the reference particle

𝑝 = Δ𝐸
𝑝0𝐶

As well as a seventh value used to add constants to some of the prior values if necessary. Through this
seventh state, the addition of constants can be represented using a matrix multiplication.

Parameters
energy – Reference energy of the Beam. Read from the fed-in Cheetah Beam.

Returns
A 7x7 Matrix for further calculations.

class accelerator.Element(name: str | None = None)
Base class for elements of particle accelerators.

Parameters
name – Unique identifier of the element.

26 Chapter 3. Documentation

Cheetah, Release 0.6.3

abstract property defining_features: list[str]

List of features that define the element. Used to compare elements for equality and to save them.

NOTE: When overriding this property, make sure to call the super method and extend the list it returns.

forward(incoming: Beam)→ Beam
Forward function required by torch.nn.Module. Simply calls track.

abstract property is_skippable: bool

Whether the element can be skipped during tracking. If True, the element’s transfer map is combined with
the transfer maps of surrounding skipable elements.

abstract plot(ax: Axes, s: float)→ None
Plot a representation of this element into a matplotlib Axes at position s.

Parameters

• ax – Axes to plot the representation into.

• s – Position of the object along s in meters.

abstract split(resolution: Tensor)→ list[Element]
Split the element into slices no longer than resolution. Some elements may not be splittable, in which case
a list containing only the element itself is returned.

Parameters
resolution – Length of the longest allowed split in meters.

Returns
Ordered sequence of sliced elements.

track(incoming: Beam)→ Beam
Track particles through the element. The input can be a ParameterBeam or a ParticleBeam.

Parameters
incoming – Beam of particles entering the element.

Returns
Beam of particles exiting the element.

training: bool

transfer_map(energy: Tensor)→ Tensor
Generates the element’s transfer map that describes how the beam and its particles are transformed when
traveling through the element. The state vector consists of 6 values with a physical meaning: (in the trace
space notation)

• x: Position in x direction

• xp: Angle in x direction

• y: Position in y direction

• yp: Angle in y direction

• s: Position in longitudinal direction, the zero value is set to the

reference position (usually the center of the pulse) - p: Relative energy deviation from the reference particle

𝑝 = Δ𝐸
𝑝0𝐶

As well as a seventh value used to add constants to some of the prior values if necessary. Through this
seventh state, the addition of constants can be represented using a matrix multiplication.

3.1. Accelerator 27

Cheetah, Release 0.6.3

Parameters
energy – Reference energy of the Beam. Read from the fed-in Cheetah Beam.

Returns
A 7x7 Matrix for further calculations.

class accelerator.HorizontalCorrector(length: Tensor | Parameter, angle: Tensor | Parameter | None =
None, name: str | None = None, device=None,
dtype=torch.float32)

Horizontal corrector magnet in a particle accelerator. Note: This is modeled as a drift section with

a thin-kick in the horizontal plane.

Parameters

• length – Length in meters.

• angle – Particle deflection angle in the horizontal plane in rad.

• name – Unique identifier of the element.

property defining_features: list[str]

List of features that define the element. Used to compare elements for equality and to save them.

NOTE: When overriding this property, make sure to call the super method and extend the list it returns.

property is_active: bool

property is_skippable: bool

Whether the element can be skipped during tracking. If True, the element’s transfer map is combined with
the transfer maps of surrounding skipable elements.

plot(ax: Axes, s: float)→ None
Plot a representation of this element into a matplotlib Axes at position s.

Parameters

• ax – Axes to plot the representation into.

• s – Position of the object along s in meters.

split(resolution: Tensor)→ list[Element]
Split the element into slices no longer than resolution. Some elements may not be splittable, in which case
a list containing only the element itself is returned.

Parameters
resolution – Length of the longest allowed split in meters.

Returns
Ordered sequence of sliced elements.

training: bool

transfer_map(energy: Tensor)→ Tensor
Generates the element’s transfer map that describes how the beam and its particles are transformed when
traveling through the element. The state vector consists of 6 values with a physical meaning: (in the trace
space notation)

• x: Position in x direction

• xp: Angle in x direction

28 Chapter 3. Documentation

Cheetah, Release 0.6.3

• y: Position in y direction

• yp: Angle in y direction

• s: Position in longitudinal direction, the zero value is set to the

reference position (usually the center of the pulse) - p: Relative energy deviation from the reference particle

𝑝 = Δ𝐸
𝑝0𝐶

As well as a seventh value used to add constants to some of the prior values if necessary. Through this
seventh state, the addition of constants can be represented using a matrix multiplication.

Parameters
energy – Reference energy of the Beam. Read from the fed-in Cheetah Beam.

Returns
A 7x7 Matrix for further calculations.

class accelerator.Marker(name: str | None = None)
General Marker / Monitor element

Parameters
name – Unique identifier of the element.

property defining_features: list[str]

List of features that define the element. Used to compare elements for equality and to save them.

NOTE: When overriding this property, make sure to call the super method and extend the list it returns.

property is_skippable: bool

Whether the element can be skipped during tracking. If True, the element’s transfer map is combined with
the transfer maps of surrounding skipable elements.

plot(ax: Axes, s: float)→ None
Plot a representation of this element into a matplotlib Axes at position s.

Parameters

• ax – Axes to plot the representation into.

• s – Position of the object along s in meters.

split(resolution: Tensor)→ list[Element]
Split the element into slices no longer than resolution. Some elements may not be splittable, in which case
a list containing only the element itself is returned.

Parameters
resolution – Length of the longest allowed split in meters.

Returns
Ordered sequence of sliced elements.

track(incoming)
Track particles through the element. The input can be a ParameterBeam or a ParticleBeam.

Parameters
incoming – Beam of particles entering the element.

Returns
Beam of particles exiting the element.

training: bool

3.1. Accelerator 29

Cheetah, Release 0.6.3

transfer_map(energy)
Generates the element’s transfer map that describes how the beam and its particles are transformed when
traveling through the element. The state vector consists of 6 values with a physical meaning: (in the trace
space notation)

• x: Position in x direction

• xp: Angle in x direction

• y: Position in y direction

• yp: Angle in y direction

• s: Position in longitudinal direction, the zero value is set to the

reference position (usually the center of the pulse) - p: Relative energy deviation from the reference particle

𝑝 = Δ𝐸
𝑝0𝐶

As well as a seventh value used to add constants to some of the prior values if necessary. Through this
seventh state, the addition of constants can be represented using a matrix multiplication.

Parameters
energy – Reference energy of the Beam. Read from the fed-in Cheetah Beam.

Returns
A 7x7 Matrix for further calculations.

class accelerator.Quadrupole(length: Tensor | Parameter, k1: Tensor | Parameter | None = None,
misalignment: Tensor | Parameter | None = None, tilt: Tensor | Parameter |
None = None, name: str | None = None, device=None, dtype=torch.float32)

Quadrupole magnet in a particle accelerator.

Parameters

• length – Length in meters.

• k1 – Strength of the quadrupole in rad/m.

• misalignment – Misalignment vector of the quadrupole in x- and y-directions.

• tilt – Tilt angle of the quadrupole in x-y plane [rad]. pi/4 for skew-quadrupole.

• name – Unique identifier of the element.

property defining_features: list[str]

List of features that define the element. Used to compare elements for equality and to save them.

NOTE: When overriding this property, make sure to call the super method and extend the list it returns.

property is_active: bool

property is_skippable: bool

Whether the element can be skipped during tracking. If True, the element’s transfer map is combined with
the transfer maps of surrounding skipable elements.

plot(ax: Axes, s: float)→ None
Plot a representation of this element into a matplotlib Axes at position s.

Parameters

• ax – Axes to plot the representation into.

• s – Position of the object along s in meters.

30 Chapter 3. Documentation

Cheetah, Release 0.6.3

split(resolution: Tensor)→ list[Element]
Split the element into slices no longer than resolution. Some elements may not be splittable, in which case
a list containing only the element itself is returned.

Parameters
resolution – Length of the longest allowed split in meters.

Returns
Ordered sequence of sliced elements.

training: bool

transfer_map(energy: Tensor)→ Tensor
Generates the element’s transfer map that describes how the beam and its particles are transformed when
traveling through the element. The state vector consists of 6 values with a physical meaning: (in the trace
space notation)

• x: Position in x direction

• xp: Angle in x direction

• y: Position in y direction

• yp: Angle in y direction

• s: Position in longitudinal direction, the zero value is set to the

reference position (usually the center of the pulse) - p: Relative energy deviation from the reference particle

𝑝 = Δ𝐸
𝑝0𝐶

As well as a seventh value used to add constants to some of the prior values if necessary. Through this
seventh state, the addition of constants can be represented using a matrix multiplication.

Parameters
energy – Reference energy of the Beam. Read from the fed-in Cheetah Beam.

Returns
A 7x7 Matrix for further calculations.

class accelerator.RBend(length: Tensor | Parameter | None, angle: Tensor | Parameter | None = None, e1:
Tensor | Parameter | None = None, e2: Tensor | Parameter | None = None, tilt: Tensor
| Parameter | None = None, fringe_integral: Tensor | Parameter | None = None,
fringe_integral_exit: Tensor | Parameter | None = None, gap: Tensor | Parameter |
None = None, name: str | None = None, device=None, dtype=torch.float32)

Rectangular bending magnet.

Parameters

• length – Length in meters.

• angle – Deflection angle in rad.

• e1 – The angle of inclination of the entrance face [rad].

• e2 – The angle of inclination of the exit face [rad].

• tilt – Tilt of the magnet in x-y plane [rad].

• fringe_integral – Fringe field integral (of the enterance face).

• fringe_integral_exit – (only set if different from fint) Fringe field integral of the exit
face.

• gap – The magnet gap [m], NOTE in MAD and ELEGANT: HGAP = gap/2

3.1. Accelerator 31

Cheetah, Release 0.6.3

• name – Unique identifier of the element.

training: bool

class accelerator.Screen(resolution: Tensor | Parameter | None = None, pixel_size: Tensor | Parameter | None
= None, binning: Tensor | Parameter | None = None, misalignment: Tensor |
Parameter | None = None, is_active: bool = False, name: str | None = None,
device=None, dtype=torch.float32)

Diagnostic screen in a particle accelerator.

Parameters

• resolution – Resolution of the camera sensor looking at the screen given as Tensor (width,
height).

• pixel_size – Size of a pixel on the screen in meters given as a Tensor (width, height).

• binning – Binning used by the camera.

• misalignment – Misalignment of the screen in meters given as a Tensor (x, y).

• is_active – If True the screen is active and will record the beam’s distribution. If False
the screen is inactive and will not record the beam’s distribution.

• name – Unique identifier of the element.

property defining_features: list[str]

List of features that define the element. Used to compare elements for equality and to save them.

NOTE: When overriding this property, make sure to call the super method and extend the list it returns.

property effective_pixel_size: Tensor

property effective_resolution: Tensor

property extent: Tensor

get_read_beam()→ Beam

property is_skippable: bool

Whether the element can be skipped during tracking. If True, the element’s transfer map is combined with
the transfer maps of surrounding skipable elements.

property pixel_bin_edges: tuple[Tensor, Tensor]

plot(ax: Axes, s: float)→ None
Plot a representation of this element into a matplotlib Axes at position s.

Parameters

• ax – Axes to plot the representation into.

• s – Position of the object along s in meters.

property reading: Tensor

set_read_beam(value: Beam)→ None

split(resolution: Tensor)→ list[Element]
Split the element into slices no longer than resolution. Some elements may not be splittable, in which case
a list containing only the element itself is returned.

32 Chapter 3. Documentation

Cheetah, Release 0.6.3

Parameters
resolution – Length of the longest allowed split in meters.

Returns
Ordered sequence of sliced elements.

track(incoming: Beam)→ Beam
Track particles through the element. The input can be a ParameterBeam or a ParticleBeam.

Parameters
incoming – Beam of particles entering the element.

Returns
Beam of particles exiting the element.

training: bool

transfer_map(energy: Tensor)→ Tensor
Generates the element’s transfer map that describes how the beam and its particles are transformed when
traveling through the element. The state vector consists of 6 values with a physical meaning: (in the trace
space notation)

• x: Position in x direction

• xp: Angle in x direction

• y: Position in y direction

• yp: Angle in y direction

• s: Position in longitudinal direction, the zero value is set to the

reference position (usually the center of the pulse) - p: Relative energy deviation from the reference particle

𝑝 = Δ𝐸
𝑝0𝐶

As well as a seventh value used to add constants to some of the prior values if necessary. Through this
seventh state, the addition of constants can be represented using a matrix multiplication.

Parameters
energy – Reference energy of the Beam. Read from the fed-in Cheetah Beam.

Returns
A 7x7 Matrix for further calculations.

class accelerator.Segment(elements: list[Element], name: str = 'unnamed')
Segment of a particle accelerator consisting of several elements.

Parameters

• cell – List of Cheetah elements that describe an accelerator (section).

• name – Unique identifier of the element.

property defining_features: list[str]

List of features that define the element. Used to compare elements for equality and to save them.

NOTE: When overriding this property, make sure to call the super method and extend the list it returns.

flattened()→ Segment
Return a flattened version of the segment, i.e. one where all subsegments are resolved and their elements
entered into a top-level segment.

3.1. Accelerator 33

Cheetah, Release 0.6.3

classmethod from_bmad(bmad_lattice_file_path: str, environment_variables: dict | None = None)→
Segment

Read a Cheetah segment from a Bmad lattice file.

NOTE: This function was designed at the example of the LCLS lattice. While this lattice is extensive, this
function might not properly convert all features of a Bmad lattice. If you find that this function does not
work for your lattice, please open an issue on GitHub.

Parameters

• bmad_lattice_file_path – Path to the Bmad lattice file.

• environment_variables – Dictionary of environment variables to use when parsing the
lattice file.

Returns
Cheetah Segment representing the Bmad lattice.

classmethod from_lattice_json(filepath: str)→ Segment
Load a Cheetah model from a JSON file.

Parameters
filename – Name/path of the file to load the lattice from.

Returns
Loaded Cheetah Segment.

classmethod from_nx_tables(filepath: Path | str)→ Element
Read an NX Tables CSV-like file generated for the ARES lattice into a Cheetah Segment.

NOTE: This format is specific to the ARES accelerator at DESY.

Parameters
filepath – Path to the NX Tables file.

Returns
Converted Cheetah Segment.

classmethod from_ocelot(cell, name: str | None = None, warnings: bool = True, device=None,
dtype=torch.float32, **kwargs)→ Segment

Translate an Ocelot cell to a Cheetah Segment.

NOTE Objects not supported by Cheetah are translated to drift sections. Screen objects are created only
from ocelot.Monitor objects when the string “BSC” is contained in their id attribute. Their screen properties
are always set to default values and most likely need adjusting afterwards. BPM objects are only created
from ocelot.Monitor objects when their id has a substring “BPM”.

Parameters

• cell – Ocelot cell, i.e. a list of Ocelot elements to be converted.

• name – Unique identifier for the entire segment.

• warnings – Whether to print warnings when objects are not supported by Cheetah or
converted with potentially unexpected behavior.

Returns
Cheetah segment closely resembling the Ocelot cell.

inactive_elements_as_drifts(except_for: list[str] | None = None)→ Segment
Return a segment where all inactive elements (that have a length) are replaced by drifts. This can be used
to speed up tracking through the segment and is a valid thing to as inactive elements should basically be no
different from drift sections.

34 Chapter 3. Documentation

Cheetah, Release 0.6.3

Parameters
except_for – List of names of elements that should not be replaced by drifts despite being
inactive. Usually these are the elements that are currently inactive but will be activated later.

Returns
Segment with inactive elements replaced by drifts.

property is_skippable: bool

Whether the element can be skipped during tracking. If True, the element’s transfer map is combined with
the transfer maps of surrounding skipable elements.

property length: Tensor

plot(ax: Axes, s: float)→ None
Plot a representation of this element into a matplotlib Axes at position s.

Parameters

• ax – Axes to plot the representation into.

• s – Position of the object along s in meters.

plot_overview(fig: Figure | None = None, beam: Beam | None = None, n: int = 10, resolution: float =
0.01)→ None

Plot an overview of the segment with the lattice and traced reference particles.

Parameters

• fig – Figure to plot the overview into.

• beam – Entering beam from which the reference particles are sampled.

• n – Number of reference particles to plot. Must not be larger than number of particles
passed in beam.

• resolution – Minimum resolution of the tracking of the reference particles in the plot.

plot_reference_particle_traces(axx: Axes, axy: Axes, beam: Beam | None = None, num_particles: int
= 10, resolution: float = 0.01)→ None

Plot n reference particles along the segment view in x- and y-direction.

Parameters

• axx – Axes to plot the particle traces into viewed in x-direction.

• axy – Axes to plot the particle traces into viewed in y-direction.

• beam – Entering beam from which the reference particles are sampled.

• num_particles – Number of reference particles to plot. Must not be larger than number
of particles passed in beam.

• resolution – Minimum resolution of the tracking of the reference particles in the plot.

plot_twiss(beam: Beam, ax: Any | None = None)→ None
Plot twiss parameters along the segment.

plot_twiss_over_lattice(beam: Beam, figsize=(8, 4))→ None
Plot twiss parameters in a plot over a plot of the lattice.

split(resolution: Tensor)→ list[Element]
Split the element into slices no longer than resolution. Some elements may not be splittable, in which case
a list containing only the element itself is returned.

3.1. Accelerator 35

Cheetah, Release 0.6.3

Parameters
resolution – Length of the longest allowed split in meters.

Returns
Ordered sequence of sliced elements.

subcell(start: str, end: str)→ Segment
Extract a subcell [start, end] from an this segment.

to_lattice_json(filepath: str, title: str | None = None, info: str = 'This is a placeholder lattice
description')→ None

Save a Cheetah model to a JSON file.

Parameters

• filename – Name/path of the file to save the lattice to.

• title – Title of the lattice. If not provided, defaults to the name of the Segment object. If
that also does not have a name, defaults to “Unnamed Lattice”.

• info – Information about the lattice. Defaults to “This is a placeholder lattice description”.

track(incoming: Beam)→ Beam
Track particles through the element. The input can be a ParameterBeam or a ParticleBeam.

Parameters
incoming – Beam of particles entering the element.

Returns
Beam of particles exiting the element.

training: bool

transfer_map(energy: Tensor)→ Tensor
Generates the element’s transfer map that describes how the beam and its particles are transformed when
traveling through the element. The state vector consists of 6 values with a physical meaning: (in the trace
space notation)

• x: Position in x direction

• xp: Angle in x direction

• y: Position in y direction

• yp: Angle in y direction

• s: Position in longitudinal direction, the zero value is set to the

reference position (usually the center of the pulse) - p: Relative energy deviation from the reference particle

𝑝 = Δ𝐸
𝑝0𝐶

As well as a seventh value used to add constants to some of the prior values if necessary. Through this
seventh state, the addition of constants can be represented using a matrix multiplication.

Parameters
energy – Reference energy of the Beam. Read from the fed-in Cheetah Beam.

Returns
A 7x7 Matrix for further calculations.

transfer_maps_merged(incoming_beam: Beam, except_for: list[str] | None = None)→ Segment
Return a segment where the transfer maps of skipable elements are merged into elements of type Custom-
TransferMap. This can be used to speed up tracking through the segment.

36 Chapter 3. Documentation

Cheetah, Release 0.6.3

Parameters

• incoming_beam – Beam that is incoming to the segment. NOTE: This beam is needed
to determine the energy of the beam when entering each element, as the transfer maps of
merged elements might depend on the beam energy.

• except_for – List of names of elements that should not be merged despite being skip-
pable. Usually these are the elements that are changed from one tracking to another.

Returns
Segment with merged transfer maps.

without_inactive_markers(except_for: list[str] | None = None)→ Segment
Return a segment where all inactive markers are removed. This can be used to speed up tracking through
the segment.

NOTE: is_active has not yet been implemented for Markers. Therefore, this function currently removes all
markers.

Parameters
except_for – List of names of elements that should not be removed despite being inactive.

Returns
Segment without inactive markers.

without_inactive_zero_length_elements(except_for: list[str] | None = None)→ Segment
Return a segment where all inactive zero length elements are removed. This can be used to speed up tracking
through the segment.

NOTE: If is_active is not implemented for an element, it is assumed to be inactive and will be removed.

Parameters
except_for – List of names of elements that should not be removed despite being inactive
and having a zero length.

Returns
Segment without inactive zero length elements.

class accelerator.Solenoid(length: Tensor | Parameter | None = None, k: Tensor | Parameter | None = None,
misalignment: Tensor | Parameter | None = None, name: str | None = None,
device=None, dtype=torch.float32)

Solenoid magnet.

Implemented according to A.W.Chao P74

Parameters

• length – Length in meters.

• k – Normalised strength of the solenoid magnet B0/(2*Brho). B0 is the field inside the
solenoid, Brho is the momentum of central trajectory.

• misalignment – Misalignment vector of the solenoid magnet in x- and y-directions.

• name – Unique identifier of the element.

property defining_features: list[str]

List of features that define the element. Used to compare elements for equality and to save them.

NOTE: When overriding this property, make sure to call the super method and extend the list it returns.

property is_active: bool

3.1. Accelerator 37

Cheetah, Release 0.6.3

is_skippable()→ bool
Whether the element can be skipped during tracking. If True, the element’s transfer map is combined with
the transfer maps of surrounding skipable elements.

plot(ax: Axes, s: float)→ None
Plot a representation of this element into a matplotlib Axes at position s.

Parameters

• ax – Axes to plot the representation into.

• s – Position of the object along s in meters.

split(resolution: Tensor)→ list[Element]
Split the element into slices no longer than resolution. Some elements may not be splittable, in which case
a list containing only the element itself is returned.

Parameters
resolution – Length of the longest allowed split in meters.

Returns
Ordered sequence of sliced elements.

training: bool

transfer_map(energy: Tensor)→ Tensor
Generates the element’s transfer map that describes how the beam and its particles are transformed when
traveling through the element. The state vector consists of 6 values with a physical meaning: (in the trace
space notation)

• x: Position in x direction

• xp: Angle in x direction

• y: Position in y direction

• yp: Angle in y direction

• s: Position in longitudinal direction, the zero value is set to the

reference position (usually the center of the pulse) - p: Relative energy deviation from the reference particle

𝑝 = Δ𝐸
𝑝0𝐶

As well as a seventh value used to add constants to some of the prior values if necessary. Through this
seventh state, the addition of constants can be represented using a matrix multiplication.

Parameters
energy – Reference energy of the Beam. Read from the fed-in Cheetah Beam.

Returns
A 7x7 Matrix for further calculations.

class accelerator.Undulator(length: Tensor | Parameter, is_active: bool = False, name: str | None = None,
device=None, dtype=torch.float32)

Element representing an undulator in a particle accelerator.

NOTE Currently behaves like a drift section but is plotted distinctively.

Parameters

• length – Length in meters.

• is_active – Indicates if the undulator is active or not. Currently has no effect.

38 Chapter 3. Documentation

Cheetah, Release 0.6.3

• name – Unique identifier of the element.

property defining_features: list[str]

List of features that define the element. Used to compare elements for equality and to save them.

NOTE: When overriding this property, make sure to call the super method and extend the list it returns.

property is_skippable: bool

Whether the element can be skipped during tracking. If True, the element’s transfer map is combined with
the transfer maps of surrounding skipable elements.

plot(ax: Axes, s: float)→ None
Plot a representation of this element into a matplotlib Axes at position s.

Parameters

• ax – Axes to plot the representation into.

• s – Position of the object along s in meters.

split(resolution: Tensor)→ list[Element]
Split the element into slices no longer than resolution. Some elements may not be splittable, in which case
a list containing only the element itself is returned.

Parameters
resolution – Length of the longest allowed split in meters.

Returns
Ordered sequence of sliced elements.

training: bool

transfer_map(energy: Tensor)→ Tensor
Generates the element’s transfer map that describes how the beam and its particles are transformed when
traveling through the element. The state vector consists of 6 values with a physical meaning: (in the trace
space notation)

• x: Position in x direction

• xp: Angle in x direction

• y: Position in y direction

• yp: Angle in y direction

• s: Position in longitudinal direction, the zero value is set to the

reference position (usually the center of the pulse) - p: Relative energy deviation from the reference particle

𝑝 = Δ𝐸
𝑝0𝐶

As well as a seventh value used to add constants to some of the prior values if necessary. Through this
seventh state, the addition of constants can be represented using a matrix multiplication.

Parameters
energy – Reference energy of the Beam. Read from the fed-in Cheetah Beam.

Returns
A 7x7 Matrix for further calculations.

class accelerator.VerticalCorrector(length: Tensor | Parameter, angle: Tensor | Parameter | None = None,
name: str | None = None, device=None, dtype=torch.float32)

Verticle corrector magnet in a particle accelerator. Note: This is modeled as a drift section with

3.1. Accelerator 39

Cheetah, Release 0.6.3

a thin-kick in the vertical plane.

Parameters

• length – Length in meters.

• angle – Particle deflection angle in the vertical plane in rad.

• name – Unique identifier of the element.

property defining_features: list[str]

List of features that define the element. Used to compare elements for equality and to save them.

NOTE: When overriding this property, make sure to call the super method and extend the list it returns.

property is_active: bool

property is_skippable: bool

Whether the element can be skipped during tracking. If True, the element’s transfer map is combined with
the transfer maps of surrounding skipable elements.

plot(ax: Axes, s: float)→ None
Plot a representation of this element into a matplotlib Axes at position s.

Parameters

• ax – Axes to plot the representation into.

• s – Position of the object along s in meters.

split(resolution: Tensor)→ list[Element]
Split the element into slices no longer than resolution. Some elements may not be splittable, in which case
a list containing only the element itself is returned.

Parameters
resolution – Length of the longest allowed split in meters.

Returns
Ordered sequence of sliced elements.

training: bool

transfer_map(energy: Tensor)→ Tensor
Generates the element’s transfer map that describes how the beam and its particles are transformed when
traveling through the element. The state vector consists of 6 values with a physical meaning: (in the trace
space notation)

• x: Position in x direction

• xp: Angle in x direction

• y: Position in y direction

• yp: Angle in y direction

• s: Position in longitudinal direction, the zero value is set to the

reference position (usually the center of the pulse) - p: Relative energy deviation from the reference particle

𝑝 = Δ𝐸
𝑝0𝐶

As well as a seventh value used to add constants to some of the prior values if necessary. Through this
seventh state, the addition of constants can be represented using a matrix multiplication.

40 Chapter 3. Documentation

Cheetah, Release 0.6.3

Parameters
energy – Reference energy of the Beam. Read from the fed-in Cheetah Beam.

Returns
A 7x7 Matrix for further calculations.

3.2 Astralavista

converters.astralavista.from_astrabeam(path: str)→ tuple[ndarray, float, ndarray]
Read from a ASTRA beam distribution, and prepare for conversion to a Cheetah ParticleBeam or ParameterBeam.

Adapted from the implementation in Ocelot: https://github.com/ocelot-collab/ocelot/blob/master/ocelot/
adaptors/astra2ocelot.py

Parameters
path – Path to the ASTRA beam distribution file.

Returns
(particles, energy, q_array) Particle 6D phase space information, mean energy, and the charge
array of the particle beam.

3.3 DontBmad

converters.dontbmad.assign_property(line: str, context: dict)→ dict
Assign a property of an element to the context.

Parameters

• line – Line of a property assignment to be parsed.

• context – Dictionary of variables to assign the property to and from which to read variables.

Returns
Updated context.

converters.dontbmad.assign_variable(line: str, context: dict)→ dict
Assign a variable to the context.

Parameters

• line – Line of a variable assignment to be parsed.

• context – Dictionary of variables to assign the variable to and from which to read variables.

Returns
Updated context.

converters.dontbmad.convert_bmad_lattice(bmad_lattice_file_path: Path, environment_variables: dict |
None = None)→ Element

Convert a Bmad lattice file to a Cheetah Segment.

NOTE: This function was designed at the example of the LCLS lattice. While this
lattice is extensive, this function might not properly convert all features of a Bmad lattice. If you find that
this function does not work for your lattice, please open an issue on GitHub.

Parameters

3.2. Astralavista 41

https://github.com/ocelot-collab/ocelot/blob/master/ocelot/adaptors/astra2ocelot.py
https://github.com/ocelot-collab/ocelot/blob/master/ocelot/adaptors/astra2ocelot.py

Cheetah, Release 0.6.3

• bmad_lattice_file_path – Path to the Bmad lattice file.

• environment_variables – Dictionary of environment variables to use when parsing the
lattice file.

Returns
Cheetah Segment representing the Bmad lattice.

converters.dontbmad.convert_element(name: str, context: dict)→ Element
Convert a parsed Bmad element dict to a cheetah Element.

Parameters

• name – Name of the (top-level) element to convert.

• context – Context dictionary parsed from Bmad lattice file(s).

Returns
Converted cheetah Element. If you are calling this function yourself as a user of Cheetah, this is
most likely a Segment.

converters.dontbmad.define_element(line: str, context: dict)→ dict
Define an element in the context.

Parameters

• line – Line of an element definition to be parsed.

• context – Dictionary of variables to define the element in and from which to read variables.

Returns
Updated context.

converters.dontbmad.define_line(line: str, context: dict)→ dict
Define a beam line in the context.

Parameters

• line – Line of a beam line definition to be parsed.

• context – Dictionary of variables to define the beam line in and from which to read vari-
ables.

Returns
Updated context.

converters.dontbmad.define_overlay(line: str, context: dict)→ dict
Define an overlay in the context.

Parameters

• line – Line of an overlay definition to be parsed.

• context – Dictionary of variables to define the overlay in and from which to read variables.

Returns
Updated context.

converters.dontbmad.evaluate_expression(expression: str, context: dict)→ Any
Evaluate an expression in the context of a dictionary of variables.

Parameters

• expression – Expression to evaluate.

42 Chapter 3. Documentation

Cheetah, Release 0.6.3

• context – Dictionary of variables to evaluate the expression in the context of.

Returns
Result of evaluating the expression.

converters.dontbmad.merge_delimiter_continued_lines(lines: list[str], delimiter: str, remove_delimiter:
bool = False)→ list[str]

Merge lines ending with some character as a delimitter with the following line.

Parameters

• lines – List of lines to merge.

• delimitter – Character to use as a delimitter.

• remove_delimitter – Whether to remove the delimitter from the merged line.

Returns
List of lines with ampersand-continued lines merged.

converters.dontbmad.parse_lines(lines: str)→ dict
Parse a list of lines from a Bmad lattice file. They should be cleaned and merged before being passed to this
function.

Parameters
lines – List of lines to parse.

Returns
Dictionary of variables defined in the lattice file.

converters.dontbmad.parse_use_line(line: str, context: dict)→ dict
Parse a use line.

Parameters

• line – Line of a use statement to be parsed.

• context – Dictionary of variables to define the overlay in and from which to read variables.

Returns
Updated context.

converters.dontbmad.read_clean_lines(lattice_file_path: Path)→ list[str]
Recursevely read lines from Bmad lattice files, removing comments and empty lines, and replacing lines calling
external files with the lines of the external file.

Parameters
lattice_file_path – Path to the root Bmad lattice file.

Returns
List of lines from the root Bmad lattice file and all external files.

converters.dontbmad.resolve_object_name_wildcard(wildcard_pattern: str, context: dict)→ list
Return a list of object names that match the given wildcard pattern.

Parameters

• wildcard_pattern – Wildcard pattern to match.

• context – Dictionary of variables among which to search for matching object.

Returns
List of object names that match the given wildcard pattern, both in terms of name and element
type.

3.3. DontBmad 43

Cheetah, Release 0.6.3

converters.dontbmad.validate_understood_properties(understood: list[str], properties: dict)→ None
Validate that all properties are understood. This function primarily ensures that properties not understood by
Cheetah are not ignored silently.

Raises an AssertionError if a property is found that is not understood.

Parameters

• understood – List of properties understood (or purpusefully ignored) by Cheetah.

• properties – Dictionary of properties to validate.

Returns
None

3.4 Error

3.5 LatticeJSON

class latticejson.CompactJSONEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, sort_keys=False, indent=None, separators=None,
default=None)

A JSON Encoder which only indents the first two levels.

Taken from https://github.com/nobeam/latticejson/blob/main/latticejson/format.py

encode(obj, level=0)
Return a JSON string representation of a Python data structure.

>>> from json.encoder import JSONEncoder
>>> JSONEncoder().encode({"foo": ["bar", "baz"]})
'{"foo": ["bar", "baz"]}'

latticejson.convert_element(element: Element)
Deconstruct an element into its name, class and parameters for saving to JSON.

Parameters
element – Cheetah element

Returns
Tuple of element name, element class, and element parameters

latticejson.convert_segment(segment: Segment)→ Tuple[dict, dict]
Deconstruct a segment into its name, a list of its elements and a dictionary of its element parameters for saving
to JSON.

Parameters
segment – Cheetah segment.

Returns
Tuple of elments and lattices dictionaries found in segment, including the segment itself.

latticejson.feature2nontorch(value: Any)→ Any
if necesary, convert an the value of a feature of a cheetah.Element to a non-torch type that can be saved to
LatticeJSON.

44 Chapter 3. Documentation

https://github.com/nobeam/latticejson/blob/main/latticejson/format.py

Cheetah, Release 0.6.3

Parameters
value – Value of the feature that might be in some kind of PyTorch format, such as torch.Tensor
or torch.nn.Parameter.

Returns
Value of the feature if it is not in a PyTorch format, otherwise the value converted to a non-
PyTorch format.

latticejson.load_cheetah_model(filename: str)→ Segment
Load a Cheetah model from a JSON file.

Parameters
filename – Name/path of the file to load the lattice from.

Returns
Loaded Cheetah Segment.

latticejson.nontorch2feature(value: Any)→ Any
Convert a value like a float, int, etc. to a torch.Tensor if necessary. Values of type str and bool are not converted,
because all currently existing cheetah.Element subclasses expect these values to not be of type torch.Tensor.

Parameters
value – Value to convert to a torch.Tensor if necessary.

Returns
Value converted to a torch.Tensor if necessary.

latticejson.parse_element(name: str, lattice_dict: dict)→ Element
Parse an Element named name from a lattice_dict.

Parameters

• name – Name of the Element to parse.

• lattice_dict – Dictionary containing the lattice information.

latticejson.parse_segment(name: str, lattice_dict: dict)→ Segment
Parse a Segment named name from a lattice_dict.

Parameters

• name – Name of the Segment to parse.

• lattice_dict – Dictionary containing the lattice information.

latticejson.save_cheetah_model(segment: Segment, filename: str, title: str | None = None, info: str = 'This is
a placeholder lattice description')→ None

Save a cheetah model to json file accoding to the lattice-json convention c.f. https://github.com/nobeam/
latticejson

Parameters

• segment – Cheetah Segment to save.

• filename – Name/path of the file to save the lattice to.

• title – Title of the lattice. If not provided, defaults to the name of the Segment object. If
that also does not have a name, defaults to “Unnamed Lattice”.

• info – Information about the lattice. Defaults to “This is a placeholder lattice description”.

3.5. LatticeJSON 45

https://github.com/nobeam/latticejson
https://github.com/nobeam/latticejson

Cheetah, Release 0.6.3

3.6 NOcelot

converters.nocelot.ocelot2cheetah(element, warnings: bool = True, device=None, dtype=torch.float32)→
Element

Translate an Ocelot element to a Cheetah element.

NOTE Object not supported by Cheetah are translated to drift sections. Screen objects are created only from
ocelot.Monitor objects when the string “BSC” is contained in their id attribute. Their screen properties are always
set to default values and most likely need adjusting afterwards. BPM objects are only created from ocelot.Monitor
objects when their id has a substring “BPM”.

Parameters

• element – Ocelot element object representing an element of particle accelerator.

• warnings – Whether to print warnings when elements might not be converted as expected.

Returns
Cheetah element object representing an element of particle accelerator.

converters.nocelot.subcell_of_ocelot(cell: list, start: str, end: str)→ list
Extract a subcell [start, end] from an Ocelot cell.

3.7 Particles

class particles.Beam(*args, **kwargs)

property alpha_x: Tensor

Alpha function in x direction in rad.

property alpha_y: Tensor

Alpha function in y direction in rad.

property beta_x: Tensor

Beta function in x direction in meters.

property beta_y: Tensor

Beta function in y direction in meters.

property emittance_x: Tensor

Emittance of the beam in x direction in m*rad.

property emittance_y: Tensor

Emittance of the beam in y direction in m*rad.

empty = "I'm an empty beam!"

classmethod from_astra(path: str, **kwargs)→ Beam
Load an Astra particle distribution as a Cheetah Beam.

classmethod from_ocelot(parray)→ Beam
Convert an Ocelot ParticleArray parray to a Cheetah Beam.

46 Chapter 3. Documentation

Cheetah, Release 0.6.3

classmethod from_parameters(mu_x: Tensor | None = None, mu_xp: Tensor | None = None, mu_y:
Tensor | None = None, mu_yp: Tensor | None = None, sigma_x: Tensor |
None = None, sigma_xp: Tensor | None = None, sigma_y: Tensor | None
= None, sigma_yp: Tensor | None = None, sigma_s: Tensor | None =
None, sigma_p: Tensor | None = None, cor_x: Tensor | None = None,
cor_y: Tensor | None = None, cor_s: Tensor | None = None, energy:
Tensor | None = None, total_charge: Tensor | None = None)→ Beam

Create beam that with given beam parameters.

Parameters

• n – Number of particles to generate.

• mu_x – Center of the particle distribution on x in meters.

• mu_xp – Center of the particle distribution on x’=px/px’ (trace space) in rad.

• mu_y – Center of the particle distribution on y in meters.

• mu_yp – Center of the particle distribution on y’ in rad.

• sigma_x – Sigma of the particle distribution in x direction in meters.

• sigma_xp – Sigma of the particle distribution in x’ direction in rad.

• sigma_y – Sigma of the particle distribution in y direction in meters.

• sigma_yp – Sigma of the particle distribution in y’ direction in rad.

• sigma_s – Sigma of the particle distribution in s direction in meters.

• sigma_p – Sigma of the particle distribution in p direction in meters.

• energy – Energy of the beam in eV.

• total_charge – Total charge of the beam in C.

classmethod from_twiss(beta_x: Tensor | None = None, alpha_x: Tensor | None = None, emittance_x:
Tensor | None = None, beta_y: Tensor | None = None, alpha_y: Tensor | None =
None, emittance_y: Tensor | None = None, energy: Tensor | None = None,
total_charge: Tensor | None = None)→ Beam

Create a beam from twiss parameters.

Parameters

• beta_x – Beta function in x direction in meters.

• alpha_x – Alpha function in x direction in rad.

• emittance_x – Emittance in x direction in m*rad.

• beta_y – Beta function in y direction in meters.

• alpha_y – Alpha function in y direction in rad.

• emittance_y – Emittance in y direction in m*rad.

• energy – Energy of the beam in eV.

• total_charge – Total charge of the beam in C.

property mu_p: Tensor

property mu_s: Tensor

3.7. Particles 47

Cheetah, Release 0.6.3

property mu_x: Tensor

property mu_xp: Tensor

property mu_y: Tensor

property mu_yp: Tensor

property normalized_emittance_x: Tensor

Normalized emittance of the beam in x direction in m*rad.

property normalized_emittance_y: Tensor

Normalized emittance of the beam in y direction in m*rad.

property parameters: dict

Return an iterator over module parameters.

This is typically passed to an optimizer.

Args:

recurse (bool): if True, then yields parameters of this module
and all submodules. Otherwise, yields only parameters that are direct members of this module.

Yields:
Parameter: module parameter

Example:

>>> # xdoctest: +SKIP("undefined vars")
>>> for param in model.parameters():
>>> print(type(param), param.size())
<class 'torch.Tensor'> (20L,)
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)

property relativistic_beta: Tensor

property relativistic_gamma: Tensor

property sigma_p: Tensor

property sigma_s: Tensor

property sigma_x: Tensor

property sigma_xp: Tensor

property sigma_xxp: Tensor

property sigma_y: Tensor

property sigma_yp: Tensor

property sigma_yyp: Tensor

training: bool

48 Chapter 3. Documentation

Cheetah, Release 0.6.3

transformed_to(mu_x: Tensor | None = None, mu_xp: Tensor | None = None, mu_y: Tensor | None = None,
mu_yp: Tensor | None = None, sigma_x: Tensor | None = None, sigma_xp: Tensor | None
= None, sigma_y: Tensor | None = None, sigma_yp: Tensor | None = None, sigma_s:
Tensor | None = None, sigma_p: Tensor | None = None, energy: Tensor | None = None,
total_charge: Tensor | None = None)→ Beam

Create version of this beam that is transformed to new beam parameters.

Parameters

• mu_x – Center of the particle distribution on x in meters.

• mu_xp – Center of the particle distribution on x’ in rad.

• mu_y – Center of the particle distribution on y in meters.

• mu_yp – Center of the particle distribution on y’ in rad.

• sigma_x – Sigma of the particle distribution in x direction in meters.

• sigma_xp – Sigma of the particle distribution in x’ direction in rad.

• sigma_y – Sigma of the particle distribution in y direction in meters.

• sigma_yp – Sigma of the particle distribution in y’ direction in rad.

• sigma_s – Sigma of the particle distribution in s direction in meters.

• sigma_p – Sigma of the particle distribution in p direction,

dimensionless. :param energy: Energy of the beam in eV. :param total_charge: Total charge of the beam in
C.

class particles.ParameterBeam(mu: Tensor, cov: Tensor, energy: Tensor, total_charge: Tensor | None =
None, device=None, dtype=torch.float32)

Beam of charged particles, where each particle is simulated.

Parameters

• mu – Mu vector of the beam.

• cov – Covariance matrix of the beam.

• energy – Energy of the beam in eV.

• total_charge – Total charge of the beam in C.

• device – Device to use for the beam. If “auto”, use CUDA if available. Note: Compuation-
ally it would be faster to use CPU for ParameterBeam.

classmethod from_astra(path: str, device=None, dtype=torch.float32)→ ParameterBeam
Load an Astra particle distribution as a Cheetah Beam.

classmethod from_ocelot(parray, device=None, dtype=torch.float32)→ ParameterBeam
Load an Ocelot ParticleArray parray as a Cheetah Beam.

classmethod from_parameters(mu_x: Tensor | None = None, mu_xp: Tensor | None = None, mu_y:
Tensor | None = None, mu_yp: Tensor | None = None, sigma_x: Tensor |
None = None, sigma_xp: Tensor | None = None, sigma_y: Tensor | None
= None, sigma_yp: Tensor | None = None, sigma_s: Tensor | None =
None, sigma_p: Tensor | None = None, cor_x: Tensor | None = None,
cor_y: Tensor | None = None, cor_s: Tensor | None = None, energy:
Tensor | None = None, total_charge: Tensor | None = None, device=None,
dtype=torch.float32)→ ParameterBeam

Create beam that with given beam parameters.

3.7. Particles 49

Cheetah, Release 0.6.3

Parameters

• n – Number of particles to generate.

• mu_x – Center of the particle distribution on x in meters.

• mu_xp – Center of the particle distribution on x’=px/px’ (trace space) in rad.

• mu_y – Center of the particle distribution on y in meters.

• mu_yp – Center of the particle distribution on y’ in rad.

• sigma_x – Sigma of the particle distribution in x direction in meters.

• sigma_xp – Sigma of the particle distribution in x’ direction in rad.

• sigma_y – Sigma of the particle distribution in y direction in meters.

• sigma_yp – Sigma of the particle distribution in y’ direction in rad.

• sigma_s – Sigma of the particle distribution in s direction in meters.

• sigma_p – Sigma of the particle distribution in p direction in meters.

• energy – Energy of the beam in eV.

• total_charge – Total charge of the beam in C.

classmethod from_twiss(beta_x: Tensor | None = None, alpha_x: Tensor | None = None, emittance_x:
Tensor | None = None, beta_y: Tensor | None = None, alpha_y: Tensor | None =
None, emittance_y: Tensor | None = None, sigma_s: Tensor | None = None,
sigma_p: Tensor | None = None, cor_s: Tensor | None = None, energy: Tensor |
None = None, total_charge: Tensor | None = None, device=None,
dtype=torch.float32)→ ParameterBeam

Create a beam from twiss parameters.

Parameters

• beta_x – Beta function in x direction in meters.

• alpha_x – Alpha function in x direction in rad.

• emittance_x – Emittance in x direction in m*rad.

• beta_y – Beta function in y direction in meters.

• alpha_y – Alpha function in y direction in rad.

• emittance_y – Emittance in y direction in m*rad.

• energy – Energy of the beam in eV.

• total_charge – Total charge of the beam in C.

property mu_p: Tensor

property mu_s: Tensor

property mu_x: Tensor

property mu_xp: Tensor

property mu_y: Tensor

property mu_yp: Tensor

50 Chapter 3. Documentation

Cheetah, Release 0.6.3

property sigma_p: Tensor

property sigma_s: Tensor

property sigma_x: Tensor

property sigma_xp: Tensor

property sigma_xxp: Tensor

property sigma_y: Tensor

property sigma_yp: Tensor

property sigma_yyp: Tensor

training: bool

transformed_to(mu_x: Tensor | None = None, mu_xp: Tensor | None = None, mu_y: Tensor | None = None,
mu_yp: Tensor | None = None, sigma_x: Tensor | None = None, sigma_xp: Tensor | None
= None, sigma_y: Tensor | None = None, sigma_yp: Tensor | None = None, sigma_s:
Tensor | None = None, sigma_p: Tensor | None = None, energy: Tensor | None = None,
total_charge: Tensor | None = None, device=None, dtype=torch.float32)→
ParameterBeam

Create version of this beam that is transformed to new beam parameters.

Parameters

• n – Number of particles to generate.

• mu_x – Center of the particle distribution on x in meters.

• mu_xp – Center of the particle distribution on x’ in rad.

• mu_y – Center of the particle distribution on y in meters.

• mu_yp – Center of the particle distribution on y’ in rad.

• sigma_x – Sigma of the particle distribution in x direction in meters.

• sigma_xp – Sigma of the particle distribution in x’ direction in rad.

• sigma_y – Sigma of the particle distribution in y direction in meters.

• sigma_yp – Sigma of the particle distribution in y’ direction in rad.

• sigma_s – Sigma of the particle distribution in s direction in meters.

• sigma_p – Sigma of the particle distribution in p, dimensionless.

• energy – Energy of the beam in eV.

• total_charge – Total charge of the beam in C.

class particles.ParticleBeam(particles: Tensor, energy: Tensor, particle_charges: Tensor | None = None,
device=None, dtype=torch.float32)

Beam of charged particles, where each particle is simulated.

Parameters

• particles – List of 7-dimensional particle vectors.

• energy – Energy of the beam in eV.

• total_charge – Total charge of the beam in C.

3.7. Particles 51

Cheetah, Release 0.6.3

• device – Device to move the beam’s particle array to. If set to “auto” a CUDA GPU is
selected if available. The CPU is used otherwise.

classmethod from_astra(path: str, device=None, dtype=torch.float32)→ ParticleBeam
Load an Astra particle distribution as a Cheetah Beam.

classmethod from_ocelot(parray, device=None, dtype=torch.float32)→ ParticleBeam
Convert an Ocelot ParticleArray parray to a Cheetah Beam.

classmethod from_parameters(num_particles: Tensor | None = None, mu_x: Tensor | None = None,
mu_y: Tensor | None = None, mu_xp: Tensor | None = None, mu_yp:
Tensor | None = None, sigma_x: Tensor | None = None, sigma_y: Tensor |
None = None, sigma_xp: Tensor | None = None, sigma_yp: Tensor | None
= None, sigma_s: Tensor | None = None, sigma_p: Tensor | None = None,
cor_x: Tensor | None = None, cor_y: Tensor | None = None, cor_s: Tensor
| None = None, energy: Tensor | None = None, total_charge: Tensor |
None = None, device=None, dtype=torch.float32)→ ParticleBeam

Generate Cheetah Beam of random particles.

Parameters

• num_particles – Number of particles to generate.

• mu_x – Center of the particle distribution on x in meters.

• mu_y – Center of the particle distribution on y in meters.

• mu_xp – Center of the particle distribution on x’ in rad.

• mu_yp – Center of the particle distribution on y’ in metraders.

• sigma_x – Sigma of the particle distribution in x direction in meters.

• sigma_y – Sigma of the particle distribution in y direction in meters.

• sigma_xp – Sigma of the particle distribution in x’ direction in rad.

• sigma_yp – Sigma of the particle distribution in y’ direction in rad.

• sigma_s – Sigma of the particle distribution in s direction in meters.

• sigma_p – Sigma of the particle distribution in p, dimensionless.

• cor_x – Correlation between x and x’.

• cor_y – Correlation between y and y’.

• cor_s – Correlation between s and p.

• energy – Energy of the beam in eV.

• device – Device to move the beam’s particle array to. If set to “auto” a CUDA GPU is
selected if available. The CPU is used otherwise.

Total_charge
Total charge of the beam in C.

classmethod from_twiss(num_particles: Tensor | None = None, beta_x: Tensor | None = None, alpha_x:
Tensor | None = None, emittance_x: Tensor | None = None, beta_y: Tensor |
None = None, alpha_y: Tensor | None = None, emittance_y: Tensor | None =
None, energy: Tensor | None = None, sigma_s: Tensor | None = None, sigma_p:
Tensor | None = None, cor_s: Tensor | None = None, total_charge: Tensor |
None = None, device=None, dtype=torch.float32)→ ParticleBeam

Create a beam from twiss parameters.

52 Chapter 3. Documentation

Cheetah, Release 0.6.3

Parameters

• beta_x – Beta function in x direction in meters.

• alpha_x – Alpha function in x direction in rad.

• emittance_x – Emittance in x direction in m*rad.

• beta_y – Beta function in y direction in meters.

• alpha_y – Alpha function in y direction in rad.

• emittance_y – Emittance in y direction in m*rad.

• energy – Energy of the beam in eV.

• total_charge – Total charge of the beam in C.

classmethod make_linspaced(num_particles: Tensor | None = None, mu_x: Tensor | None = None, mu_y:
Tensor | None = None, mu_xp: Tensor | None = None, mu_yp: Tensor |
None = None, sigma_x: Tensor | None = None, sigma_y: Tensor | None =
None, sigma_xp: Tensor | None = None, sigma_yp: Tensor | None = None,
sigma_s: Tensor | None = None, sigma_p: Tensor | None = None, energy:
Tensor | None = None, total_charge: Tensor | None = None, device=None,
dtype=torch.float32)→ ParticleBeam

Generate Cheetah Beam of n linspaced particles.

Parameters

• n – Number of particles to generate.

• mu_x – Center of the particle distribution on x in meters.

• mu_y – Center of the particle distribution on y in meters.

• mu_xp – Center of the particle distribution on x’ in rad.

• mu_yp – Center of the particle distribution on y’ in rad.

• sigma_x – Sigma of the particle distribution in x direction in meters.

• sigma_y – Sigma of the particle distribution in y direction in meters.

• sigma_xp – Sigma of the particle distribution in x’ direction in rad.

• sigma_yp – Sigma of the particle distribution in y’ direction in rad.

• sigma_s – Sigma of the particle distribution in s direction in meters.

• sigma_p – Sigma of the particle distribution in p, dimensionless.

• energy – Energy of the beam in eV.

• device – Device to move the beam’s particle array to. If set to “auto” a CUDA GPU is
selected if available. The CPU is used otherwise.

property mu_p: Tensor | None

property mu_s: Tensor | None

property mu_x: Tensor | None

property mu_xp: Tensor | None

property mu_y: float | None

3.7. Particles 53

Cheetah, Release 0.6.3

property mu_yp: Tensor | None

property num_particles: Tensor

property ps: Tensor | None

property sigma_p: Tensor | None

property sigma_s: Tensor | None

property sigma_x: Tensor | None

property sigma_xp: Tensor | None

property sigma_xxp: Tensor

property sigma_y: Tensor | None

property sigma_yp: Tensor | None

property sigma_yyp: Tensor

property ss: Tensor | None

property total_charge: Tensor

training: bool

transformed_to(mu_x: Tensor | None = None, mu_y: Tensor | None = None, mu_xp: Tensor | None = None,
mu_yp: Tensor | None = None, sigma_x: Tensor | None = None, sigma_y: Tensor | None =
None, sigma_xp: Tensor | None = None, sigma_yp: Tensor | None = None, sigma_s:
Tensor | None = None, sigma_p: Tensor | None = None, energy: Tensor | None = None,
total_charge: Tensor | None = None, device=None, dtype=torch.float32)→ ParticleBeam

Create version of this beam that is transformed to new beam parameters.

Parameters

• n – Number of particles to generate.

• mu_x – Center of the particle distribution on x in meters.

• mu_y – Center of the particle distribution on y in meters.

• mu_xp – Center of the particle distribution on x’ in rad.

• mu_yp – Center of the particle distribution on y’ in rad.

• sigma_x – Sigma of the particle distribution in x direction in meters.

• sigma_y – Sigma of the particle distribution in y direction in meters.

• sigma_xp – Sigma of the particle distribution in x’ direction in rad.

• sigma_yp – Sigma of the particle distribution in y’ direction in rad.

• sigma_s – Sigma of the particle distribution in s direction in meters.

• sigma_p – Sigma of the particle distribution in p, dimensionless.

• energy – Energy of the beam in eV.

• total_charge – Total charge of the beam in C.

• device – Device to move the beam’s particle array to. If set to “auto” a CUDA GPU is
selected if available. The CPU is used otherwise.

54 Chapter 3. Documentation

Cheetah, Release 0.6.3

property xps: Tensor | None

property xs: Tensor | None

property yps: Tensor | None

property ys: Tensor | None

3.8 Track Methods

Utility functions for creating transfer maps for the elements.

track_methods.base_rmatrix(length: Tensor, k1: Tensor, hx: Tensor, tilt: Tensor | None = None, energy:
Tensor | None = None)→ Tensor

Create a universal transfer matrix for a beamline element.

Parameters

• length – Length of the element in m.

• k1 – Quadrupole strength in 1/m**2.

• hx – Curvature (1/radius) of the element in 1/m**2.

• tilt – Roation of the element relative to the longitudinal axis in rad.

• energy – Beam energy in eV.

Returns
Transfer matrix for the element.

track_methods.misalignment_matrix(misalignment: Tensor)→ tuple[Tensor, Tensor]
Shift the beam for tracking beam through misaligned elements

track_methods.rotation_matrix(angle: Tensor)→ Tensor
Rotate the transfer map in x-y plane

Parameters
angle – Rotation angle in rad, for example angle = np.pi/2 for vertical = dipole.

Returns
Rotation matrix to be multiplied to the element’s transfer matrix.

3.9 Utils

class utils.UniqueNameGenerator(prefix: str)
Generates a unique name given a prefix.

3.8. Track Methods 55

Cheetah, Release 0.6.3

56 Chapter 3. Documentation

CHAPTER

FOUR

CITE CHEETAH

If you use Cheetah, please cite the following two papers:

@misc{kaiser2024cheetah,
title = {Cheetah: Bridging the Gap Between Machine Learning and Particle␣

→˓Accelerator Physics with High-Speed, Differentiable Simulations},
author = {Kaiser, Jan and Xu, Chenran and Eichler, Annika and {Santamaria␣

→˓Garcia}, Andrea},
year = {2024},
eprint = {2401.05815},
archiveprefix = {arXiv},
primaryclass = {physics.acc-ph}

}
@inproceedings{stein2022accelerating,
title = {Accelerating Linear Beam Dynamics Simulations for Machine Learning␣

→˓Applications},
author = {Stein, Oliver and Kaiser, Jan and Eichler, Annika},
year = {2022},
booktitle = {Proceedings of the 13th International Particle Accelerator Conference}

}

57

Cheetah, Release 0.6.3

58 Chapter 4. Cite Cheetah

CHAPTER

FIVE

FOR DEVELOPERS

Activate your virtual environment. (Optional)

Install the cheetah package as editable

pip install -e .

We suggest installing pre-commit hooks to automatically conform with the code formatting in commits:

pip install pre-commit
pre-commit install

59

Cheetah, Release 0.6.3

60 Chapter 5. For Developers

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

61

Cheetah, Release 0.6.3

62 Chapter 6. Indices and tables

PYTHON MODULE INDEX

a
accelerator, 19

c
converters.astralavista, 41
converters.dontbmad, 41
converters.nocelot, 46

l
latticejson, 44

p
particles, 46

t
track_methods, 55

u
utils, 55

63

Cheetah, Release 0.6.3

64 Python Module Index

INDEX

A
accelerator

module, 19
alpha_x (particles.Beam property), 46
alpha_y (particles.Beam property), 46
Aperture (class in accelerator), 19
assign_property() (in module converters.dontbmad),

41
assign_variable() (in module converters.dontbmad),

41

B
base_rmatrix() (in module track_methods), 55
Beam (class in particles), 46
beta_x (particles.Beam property), 46
beta_y (particles.Beam property), 46
BPM (class in accelerator), 20

C
Cavity (class in accelerator), 21
CompactJSONEncoder (class in latticejson), 44
convert_bmad_lattice() (in module convert-

ers.dontbmad), 41
convert_element() (in module converters.dontbmad),

42
convert_element() (in module latticejson), 44
convert_segment() (in module latticejson), 44
converters.astralavista

module, 41
converters.dontbmad

module, 41
converters.nocelot

module, 46
CustomTransferMap (class in accelerator), 23

D
define_element() (in module converters.dontbmad),

42
define_line() (in module converters.dontbmad), 42
define_overlay() (in module converters.dontbmad),

42

defining_features (accelerator.Aperture property),
19

defining_features (accelerator.BPM property), 20
defining_features (accelerator.Cavity property), 22
defining_features (accelerator.Dipole property), 24
defining_features (accelerator.Drift property), 25
defining_features (accelerator.Element property), 26
defining_features (accelerator.HorizontalCorrector

property), 28
defining_features (accelerator.Marker property), 29
defining_features (accelerator.Quadrupole prop-

erty), 30
defining_features (accelerator.Screen property), 32
defining_features (accelerator.Segment property), 33
defining_features (accelerator.Solenoid property),

37
defining_features (accelerator.Undulator property),

39
defining_features (accelerator.VerticalCorrector

property), 40
defining_features() (accelera-

tor.CustomTransferMap method), 23
Dipole (class in accelerator), 24
Drift (class in accelerator), 25

E
effective_pixel_size (accelerator.Screen property),

32
effective_resolution (accelerator.Screen property),

32
Element (class in accelerator), 26
emittance_x (particles.Beam property), 46
emittance_y (particles.Beam property), 46
empty (particles.Beam attribute), 46
encode() (latticejson.CompactJSONEncoder method),

44
evaluate_expression() (in module convert-

ers.dontbmad), 42
extent (accelerator.Screen property), 32

F
feature2nontorch() (in module latticejson), 44

65

Cheetah, Release 0.6.3

flattened() (accelerator.Segment method), 33
forward() (accelerator.Element method), 27
from_astra() (particles.Beam class method), 46
from_astra() (particles.ParameterBeam class method),

49
from_astra() (particles.ParticleBeam class method),

52
from_astrabeam() (in module converters.astralavista),

41
from_bmad() (accelerator.Segment class method), 33
from_lattice_json() (accelerator.Segment class

method), 34
from_merging_elements() (accelera-

tor.CustomTransferMap class method), 23
from_nx_tables() (accelerator.Segment class method),

34
from_ocelot() (accelerator.Segment class method), 34
from_ocelot() (particles.Beam class method), 46
from_ocelot() (particles.ParameterBeam class

method), 49
from_ocelot() (particles.ParticleBeam class method),

52
from_parameters() (particles.Beam class method), 46
from_parameters() (particles.ParameterBeam class

method), 49
from_parameters() (particles.ParticleBeam class

method), 52
from_twiss() (particles.Beam class method), 47
from_twiss() (particles.ParameterBeam class method),

50
from_twiss() (particles.ParticleBeam class method),

52

G
get_read_beam() (accelerator.Screen method), 32

H
HorizontalCorrector (class in accelerator), 28
hx (accelerator.Dipole property), 24

I
inactive_elements_as_drifts() (accelera-

tor.Segment method), 34
is_active (accelerator.Cavity property), 22
is_active (accelerator.Dipole property), 24
is_active (accelerator.HorizontalCorrector property),

28
is_active (accelerator.Quadrupole property), 30
is_active (accelerator.Solenoid property), 37
is_active (accelerator.VerticalCorrector property), 40
is_skippable (accelerator.Aperture property), 19
is_skippable (accelerator.BPM property), 20
is_skippable (accelerator.Cavity property), 22

is_skippable (accelerator.CustomTransferMap prop-
erty), 23

is_skippable (accelerator.Dipole property), 24
is_skippable (accelerator.Drift property), 26
is_skippable (accelerator.Element property), 27
is_skippable (accelerator.HorizontalCorrector prop-

erty), 28
is_skippable (accelerator.Marker property), 29
is_skippable (accelerator.Quadrupole property), 30
is_skippable (accelerator.Screen property), 32
is_skippable (accelerator.Segment property), 35
is_skippable (accelerator.Undulator property), 39
is_skippable (accelerator.VerticalCorrector property),

40
is_skippable() (accelerator.Solenoid method), 37

L
latticejson

module, 44
length (accelerator.Segment property), 35
load_cheetah_model() (in module latticejson), 45

M
make_linspaced() (particles.ParticleBeam class

method), 53
Marker (class in accelerator), 29
merge_delimiter_continued_lines() (in module

converters.dontbmad), 43
misalignment_matrix() (in module track_methods),

55
module

accelerator, 19
converters.astralavista, 41
converters.dontbmad, 41
converters.nocelot, 46
latticejson, 44
particles, 46
track_methods, 55
utils, 55

mu_p (particles.Beam property), 47
mu_p (particles.ParameterBeam property), 50
mu_p (particles.ParticleBeam property), 53
mu_s (particles.Beam property), 47
mu_s (particles.ParameterBeam property), 50
mu_s (particles.ParticleBeam property), 53
mu_x (particles.Beam property), 47
mu_x (particles.ParameterBeam property), 50
mu_x (particles.ParticleBeam property), 53
mu_xp (particles.Beam property), 48
mu_xp (particles.ParameterBeam property), 50
mu_xp (particles.ParticleBeam property), 53
mu_y (particles.Beam property), 48
mu_y (particles.ParameterBeam property), 50
mu_y (particles.ParticleBeam property), 53

66 Index

Cheetah, Release 0.6.3

mu_yp (particles.Beam property), 48
mu_yp (particles.ParameterBeam property), 50
mu_yp (particles.ParticleBeam property), 53

N
nontorch2feature() (in module latticejson), 45
normalized_emittance_x (particles.Beam property),

48
normalized_emittance_y (particles.Beam property),

48
num_particles (particles.ParticleBeam property), 54

O
ocelot2cheetah() (in module converters.nocelot), 46

P
ParameterBeam (class in particles), 49
parameters (particles.Beam property), 48
parse_element() (in module latticejson), 45
parse_lines() (in module converters.dontbmad), 43
parse_segment() (in module latticejson), 45
parse_use_line() (in module converters.dontbmad),

43
ParticleBeam (class in particles), 51
particles

module, 46
pixel_bin_edges (accelerator.Screen property), 32
plot() (accelerator.Aperture method), 19
plot() (accelerator.BPM method), 20
plot() (accelerator.Cavity method), 22
plot() (accelerator.CustomTransferMap method), 23
plot() (accelerator.Dipole method), 25
plot() (accelerator.Drift method), 26
plot() (accelerator.Element method), 27
plot() (accelerator.HorizontalCorrector method), 28
plot() (accelerator.Marker method), 29
plot() (accelerator.Quadrupole method), 30
plot() (accelerator.Screen method), 32
plot() (accelerator.Segment method), 35
plot() (accelerator.Solenoid method), 38
plot() (accelerator.Undulator method), 39
plot() (accelerator.VerticalCorrector method), 40
plot_overview() (accelerator.Segment method), 35
plot_reference_particle_traces() (accelera-

tor.Segment method), 35
plot_twiss() (accelerator.Segment method), 35
plot_twiss_over_lattice() (accelerator.Segment

method), 35
ps (particles.ParticleBeam property), 54

Q
Quadrupole (class in accelerator), 30

R
RBend (class in accelerator), 31
read_clean_lines() (in module convert-

ers.dontbmad), 43
reading (accelerator.Screen property), 32
relativistic_beta (particles.Beam property), 48
relativistic_gamma (particles.Beam property), 48
resolve_object_name_wildcard() (in module con-

verters.dontbmad), 43
rotation_matrix() (in module track_methods), 55

S
save_cheetah_model() (in module latticejson), 45
Screen (class in accelerator), 32
Segment (class in accelerator), 33
set_read_beam() (accelerator.Screen method), 32
sigma_p (particles.Beam property), 48
sigma_p (particles.ParameterBeam property), 50
sigma_p (particles.ParticleBeam property), 54
sigma_s (particles.Beam property), 48
sigma_s (particles.ParameterBeam property), 51
sigma_s (particles.ParticleBeam property), 54
sigma_x (particles.Beam property), 48
sigma_x (particles.ParameterBeam property), 51
sigma_x (particles.ParticleBeam property), 54
sigma_xp (particles.Beam property), 48
sigma_xp (particles.ParameterBeam property), 51
sigma_xp (particles.ParticleBeam property), 54
sigma_xxp (particles.Beam property), 48
sigma_xxp (particles.ParameterBeam property), 51
sigma_xxp (particles.ParticleBeam property), 54
sigma_y (particles.Beam property), 48
sigma_y (particles.ParameterBeam property), 51
sigma_y (particles.ParticleBeam property), 54
sigma_yp (particles.Beam property), 48
sigma_yp (particles.ParameterBeam property), 51
sigma_yp (particles.ParticleBeam property), 54
sigma_yyp (particles.Beam property), 48
sigma_yyp (particles.ParameterBeam property), 51
sigma_yyp (particles.ParticleBeam property), 54
Solenoid (class in accelerator), 37
split() (accelerator.Aperture method), 19
split() (accelerator.BPM method), 21
split() (accelerator.Cavity method), 22
split() (accelerator.CustomTransferMap method), 23
split() (accelerator.Dipole method), 25
split() (accelerator.Drift method), 26
split() (accelerator.Element method), 27
split() (accelerator.HorizontalCorrector method), 28
split() (accelerator.Marker method), 29
split() (accelerator.Quadrupole method), 30
split() (accelerator.Screen method), 32
split() (accelerator.Segment method), 35
split() (accelerator.Solenoid method), 38

Index 67

Cheetah, Release 0.6.3

split() (accelerator.Undulator method), 39
split() (accelerator.VerticalCorrector method), 40
ss (particles.ParticleBeam property), 54
subcell() (accelerator.Segment method), 36
subcell_of_ocelot() (in module converters.nocelot),

46

T
to_lattice_json() (accelerator.Segment method), 36
total_charge (particles.ParticleBeam property), 54
track() (accelerator.Aperture method), 20
track() (accelerator.BPM method), 21
track() (accelerator.Cavity method), 22
track() (accelerator.Element method), 27
track() (accelerator.Marker method), 29
track() (accelerator.Screen method), 33
track() (accelerator.Segment method), 36
track_methods

module, 55
training (accelerator.Aperture attribute), 20
training (accelerator.BPM attribute), 21
training (accelerator.Cavity attribute), 22
training (accelerator.CustomTransferMap attribute),

23
training (accelerator.Dipole attribute), 25
training (accelerator.Drift attribute), 26
training (accelerator.Element attribute), 27
training (accelerator.HorizontalCorrector attribute),

28
training (accelerator.Marker attribute), 29
training (accelerator.Quadrupole attribute), 31
training (accelerator.RBend attribute), 32
training (accelerator.Screen attribute), 33
training (accelerator.Segment attribute), 36
training (accelerator.Solenoid attribute), 38
training (accelerator.Undulator attribute), 39
training (accelerator.VerticalCorrector attribute), 40
training (particles.Beam attribute), 48
training (particles.ParameterBeam attribute), 51
training (particles.ParticleBeam attribute), 54
transfer_map() (accelerator.Aperture method), 20
transfer_map() (accelerator.BPM method), 21
transfer_map() (accelerator.Cavity method), 22
transfer_map() (accelerator.CustomTransferMap

method), 23
transfer_map() (accelerator.Dipole method), 25
transfer_map() (accelerator.Drift method), 26
transfer_map() (accelerator.Element method), 27
transfer_map() (accelerator.HorizontalCorrector

method), 28
transfer_map() (accelerator.Marker method), 29
transfer_map() (accelerator.Quadrupole method), 31
transfer_map() (accelerator.Screen method), 33
transfer_map() (accelerator.Segment method), 36

transfer_map() (accelerator.Solenoid method), 38
transfer_map() (accelerator.Undulator method), 39
transfer_map() (accelerator.VerticalCorrector

method), 40
transfer_maps_merged() (accelerator.Segment

method), 36
transformed_to() (particles.Beam method), 48
transformed_to() (particles.ParameterBeam method),

51
transformed_to() (particles.ParticleBeam method),

54

U
Undulator (class in accelerator), 38
UniqueNameGenerator (class in utils), 55
utils

module, 55

V
validate_understood_properties() (in module

converters.dontbmad), 43
VerticalCorrector (class in accelerator), 39

W
without_inactive_markers() (accelerator.Segment

method), 37
without_inactive_zero_length_elements()

(accelerator.Segment method), 37

X
xps (particles.ParticleBeam property), 54
xs (particles.ParticleBeam property), 55

Y
yps (particles.ParticleBeam property), 55
ys (particles.ParticleBeam property), 55

68 Index

	Installation
	Examples
	Tracking through a simple lattice
	Converting lattices from other simulation codes
	Optimising Cheetah for speed
	Gradient-based optimisation using Cheetah and PyTorch
	Simple example (without normalisation)
	Normalising parameters in gradient-based optimisation

	Documentation
	Accelerator
	Astralavista
	DontBmad
	Error
	LatticeJSON
	NOcelot
	Particles
	Track Methods
	Utils

	Cite Cheetah
	For Developers
	Indices and tables
	Python Module Index
	Index

